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Abstract

Something important is missing from the standard account of the connection between belief and 

action. The way a given belief should be expected to manifest itself in action is not a function of 

its informational content, but also depends systematically on the question that the belief 

answers. This dissertation articulates that dependence with a simple new theory of belief-

guided action, explaining a range of ordinary patterns of behaviour that cannot be accounted 

for given the standard account of belief, desire and action. The appeal to questions is especially 

fruitful when it comes to explaining behaviour that displays some inconsistency, or which is less 

than ideally rational. I call this new account of belief and action inquisitive decision theory. 

Besides providing a new model for less than ideally rational behaviour, the inquisitive account 

of belief also suggests new ways of thinking about deductive reasoning and deliberation, and 

throws new light on certain long-standing issues in doxastic logic. It brings together a 

converging set of recent insights about the role of questions in cognition stemming from 

epistemology, the philosophy of language, the metaphysics of propositions, linguistic semantics, 

formal pragmatics and psychology. In addition, it builds on work in decision theory, computer 

science, behavioural economics and the philosophy of mathematics. 
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Introduction

Imagine you find yourself in the middle of a cold, inhospitable forest at dusk, bereft of supplies 

and surrounded by disheartening animal noises. You come to a crossroads and have to choose a 

path. Hungry eyes are tracing you, and you face an almost palpable question: How do I get out of 

here? Questions await us at all the crossroads of life, both literal and metaphorical, even if they 

are usually less consequential. The choice of how many eggs to get at the supermarket raises the 

question How many eggs go into a spaghetti carbonara for four? Plotting your next chess move, you 

face the question How do I put my opponent on the defensive? In the flower shop, you wonder What 

is his favourite colour? And so on: whenever you make a choice, you face a question.

And what you decide to do normally depends on your answer to the question raised. Take the 

supermarket situation. If you reckon you need five eggs for your carbonara, you will buy half a 

dozen. If you think you need eight, you get a dozen. If you are unsure, maybe you still get a 

dozen just to be on the safe side. Thus the decision you make is guided by your answer to the 

question that the choice confronted you with. If you know the right answer to this question, you 
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will generally make the right choice, while wrong answers lead to bad choices. If you are faced 

with a question that you have no answer to at all, then you are likely also unsure what to do.

In this dissertation, I develop this question-centric or inquisitive way of thinking about belief-

guided action in a systematic way. The idea of connecting choices to questions is so natural and 

intuitive that it may appear innocuous. But it actually yields a substantial departure from the 

received view, making sense of a range of otherwise puzzling psychological phenomena, like 

the distinction between recognition and recall. Most importantly, the inquisitive picture 

suggests a systematic account of the behaviour of agents who fail to see some of the 

consequences of their beliefs, and agents with inconsistent beliefs.

The inquisitive theory I propose is modelled on the traditional, classical account of belief-guided 

action. This account has its fullest, most influential articulation in standard decision theory, 

interpreted the way economists and psychologists do: as an attempt to explain and predict 

behaviour in terms of an agents’ beliefs and desires.  On that descriptive interpretation, decision 1

theory is already highly controversial in exactly the sort of way that motivates the inquisitive 

turn. According to its critics, the strong rationality assumptions baked into the classical theory 

are so unrealistic that the theory cannot be trusted to yield accurate predictions about ordinary 

people. Celebrated exponents of that critique include Daniel Kahneman (2012) and Richard 

Thaler (Thaler and Sunstein 2008). Their groundbreaking work led to a call for less idealised, 

 For the record, inquisitive decision theory can also be interpreted normatively, as an account of what we 1

rationally ought to do given our (possibly inconsistent) beliefs and desires. I think this normative 

interpretation is both interesting and well-motivated, but it will not be my focus here.
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more realistic accounts of decision making. The inquisitive theory of belief-guided action is one 

answer to that call.

You can think of both the inquisitive and the classical theory as consisting of three nested, 

interrelated components. Each of the first three chapters concerns one of these components. The 

core component of each theory is a view about the content of a belief, and about the way an 

individual full belief affects an agent’s choices: these views are the topic of Chapter 1. The 

second component is a distinctive view of the way individual beliefs come together in belief 

states, to be described in Chapter 2. The third and final component is the account of doxastic 

uncertainty and credences or partial beliefs, to be covered in Chapter 3. With this third 

component in place, my proposal takes the form of a novel, inquisitive decision theory. Along the 

way, we build an increasingly detailed understanding of the way our cognitive limitations 

manifest themselves in the inquisitive theory, and in Chapter 2 I introduce and examine a 

simple inquisitive model for deductive reasoning.

In Chapter 4, I turn to some formal results that underpin the theory articulated in the first three 

chapters. I will provide a unified formal framework for thinking about behavioural dispositions 

generally, and use this framework to prove representation theorems for both classical and 

inquisitive decision theory. These formal results give us a precise way of seeing just how much 

less idealised the inquisitive decision theory is, allowing a direct comparison of the rationality 

assumptions that go into classical and inquisitive decision theory.

The decision-theoretical issues that are the central motivation in Chapter 1-4 intersect with a 
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longstanding issue in doxastic logic known as the problem of logical omniscience. Roughly 

speaking, this is the problem of constructing a tractable and realistic formal model of the beliefs 

and credences of agents who do not know every consequence of their beliefs, and whose beliefs 

may be inconsistent. In addition to its decision-theoretical manifestation, the problem of logical 

omniscience has many other faces: it is a complex, many-faceted issue at the intersection of 

psychology, economics, philosophy and linguistics. I cannot attempt to do justice to every 

aspect of the problem explicitly within this dissertation. However, I do think the inquisitive 

theory of belief set out below has the potential to cast new light on many of its manifestations. 

In Chapter 5, I illustrate this with an excursion beyond decision theory.

Chapter 5 concerns the problem of mathematical omniscience. According to the classical view of 

belief states, an agent’s beliefs are closed under entailment (necessitation). In particular, that 

means everyone believes every necessary truth, which includes every mathematical truth. But 

of course we do not know every mathematical truth, and this difficulty gives rise to the problem 

of explicit mathematical omniscience. The other half of the problem is that classical agents also 

cannot manifest any implicit mathematical ignorance. For instance, if a classical agent knows the 

diameter of Martha’s perfectly circular yard is 12 feet, it would follow that they also know the 

circumference of Martha’s yard to arbitrarily many decimal places. 

The inquisitive account of belief and credence provides a more promising basis for an account 

of mathematical belief. It does not face an implicit problem of mathematical omniscience at all, 

and I argue that it brings us an important step closer to addressing the explicit problem as well. 

Some of the considerations about the problem of mathematical omniscience are also relevant to 
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Frege’s Puzzle, which can be regarded as another manifestation of the problem of logical 

omniscience. In the final section of Chapter 5, I draw those connections. 

Apart from a few stray remarks, what is missing from the dissertation is a treatment of the  

semantics of belief reports –– the sentences we use to describe and attribute beliefs. This would 

be a surprising omission in any philosophy dissertation about belief, but especially coming from 

someone who specialises in the philosophy of language. My excuse for this hiatus is that it 

reflects what I have come to think is the proper order of inquiry here. The problem of logical 

omniscience as it arises in semantics and doxastic logic can formally be addressed using a wide 

variety of fine-grained conceptions of belief content. But such formal solutions do not touch the 

root of the problem unless they explain what it is about our doxastic mental states that makes it 

the case that belief contents are fine-grained in this or that particular way. As Stalnaker put it, 

“One needs an account of what states of belief, desire and intention are that explains how the 

fine-grained structure of some notion of proposition contributes to distinguishing between 

different states of belief, desire or intention.” (Stalnaker 1999b, p. 27) 

Below I provide such an explanation for the kind of inquisitive propositional structure I favour. 

The account certainly suggests a moral for the semantics of belief reports, and it provides the 

conceptual groundwork for a new semantics. But I will remain agnostic about the details of how 

this moral is to be implemented. Should we to appeal to alternatives semantics, to questions 

under discussion, or inquisitive semantics? What is the relation to embedded questions in 

knowledge reports? How ambiguous are belief and knowledge attributions? What is the role of 

focus? These are all great questions. But we will face them another day. 
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Chapter 1.
The Inquisitive Turn

In this chapter, I aim to establish the basis of the classical and inquisitive pictures of belief-

guided action, and to provide some initial motivation for the move to the latter. We will see that  

there are certain ordinary, everyday patterns of behaviour that the classical picture cannot make 

sense of, but which have a perfectly natural and straightforward explanation on the inquisitive 

picture. 

More specifically, this chapter investigates the ways in which a given outright belief can be 

expected to guide an agent’s actions. I will present and contrast the classical and inquisitive 

view of the contents of a belief, and the classical and inquisitive view of the way a belief with a 

certain particular content manifests itself in action. As we will see in subsequent chapters, all 

other aspects of the inquisitive theory of belief-guided behaviour follow on very naturally once 

you make this fundamental step from the classical to the inquisitive conception of individual 

beliefs. Thus the entire dissertation is essentially a drawn-out exploration of the ramifications of 

the inquisitive turn I argue for in this chapter.
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Here is a concise statement of the view of individual beliefs at the heart of the classical picture:

Individual Beliefs (Classical): A belief is the possession of a piece of information 

about the world, and manifests itself in behaviour as a general disposition to act on 

that information. (1.1)

Different authors have advocated different versions of this view, so I have intentionally left the 

initial statement a bit ambiguous. In particular, a “piece of information” could be a sentence, or 

a Russellian proposition, or a set of possible worlds. In one form or other, (1.1) has been 

endorsed, at least as a ceteris paribus approximation, by theorists of belief of all persuasions: 

from Fodor to Friston, from Hempel to Hintikka and from Savage to Schwitzgebel. (I provide a 

brief overview below.)

I will argue that, if we really want to address the fundamental problems of the classical picture, 

even this most basic, uncontroversial part stands in need of qualification. On the alternative 

view I propose, the behavioural manifestation of a given belief does not just depend on the 

information it carries, but also on the question it answers:

Individual Beliefs (Inquisitive): A belief is the possession of an answer to a specific 

question, and manifests itself in behaviour as a disposition to act on that answer 

when faced with that question. (1.2)

As will become clear over the next three chapters, this seemingly modest adaptation makes a 

big difference, allowing us to account for a range of ordinary behaviours that cannot be 

classically explained.
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Here is a first illustration (inspired by Elga and Rayo 2019, §2):

ROMEO RECALL: Juliet comes home to find a note saying “Somebody called for you –– 

didn’t catch a name but he sounded upset.” There is a phone number below it, but the 

beginning is smudged out and Juliet can only read the final digits “6300”. She 

instantly recognises Romeo’s number, and she decides to go see him. When no-one 

answers the door, she rushes to a nearby phone booth in order to call him back. She 

dials  2-1-2-5-2-9-… only to realise she does not remember those last four digits.

The classical view has trouble accounting for Juliet’s behaviour here. First she acts on the 

information that Romeo’s number ends in -6300, later she does not. So does she believe it or not? If 

she has the belief, we have no classical explanation for why she failed to act on it in the phone 

booth. If she lacks it, then why did she go to Romeo’s house? Either way, we have no complete 

classical account of her actions. 

With respect to this example, the advantage of the inquisitive picture lies in the fact that it 

makes a distinction between two potential beliefs that the classical view identifies. One is the 

belief that Romeo’s number ends in -6300, in answer to the question Who has a number ending in 

-6300? The other is the belief that Romeo’s number ends in -6300, in answer to the question What is 

Romeo’s number? These two belief contents are informationally equivalent, but inquisitively 

distinct. Thus the inquisitive view allows us to say that Juliet has the former belief but lacks the 

latter. The note confronts Juliet with the question Who has a number ending in -6300? Her 

response is guided by her answer to that question: Romeo. In the phone booth, Juliet is 

intuitively confronted with a different question, What is Romeo’s number? It is because she has no 
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answer to the latter question that she does not act on this information on that occasion. In this 

way, the inquisitive view accounts for the contrast between Juliet’s behaviour in these two 

contexts on the basis of the fact that she is confronted with a different question on each occasion. 

A defender of the classical view might insist that by the time Juliet arrives at the phone booth, 

she has lost the information she had before: she believed at first that Romeo’s number ends on 

-6300, but by the time she made it to the phone booth, she must have forgotten. However, this 

kind of response is insufficiently general to be compelling. For if Juliet had really lost this 

information, she would not be able to recognise the phone number at this point either. But 

imagine Juliet were to spot the digits “6300” scribbled down on the wall of the phone booth. 

Probably, she would breathe a sigh of relief and dial the number. This shows that she has in fact 

retained the ability to recognise the number. Furthermore, the forgetful explanation assumes 

that when Juliet came home, she did have an ability to reproduce the last digits of Romeo’s 

number. But that need not be the case. The bottom line is that classical picture is fundamentally 

ill-equipped to capture the familiar and psychologically well-established distinction between 

the ability to recognise a phone number and the ability to recall it. By contrast, that distinction 

comes naturally on the inquisitive picture.

The thesis that cognitive content is not purely informational but in some way tied to questions 

has ample independent motivation. It has been defended on a wide variety of epistemological, 

linguistic and psychological grounds by Dretske (1970), Schaffer (2004), Yalcin (2008, 2011, 2018), 

Egré and Bonnay (2012), Blaauw (2013), Koralus and Mascarenhas (2013, 2018), Yablo (2014), 

Fritz and Lederman (2015), Pérez Carballo (2016), Friedman (2017), Simons, Beaver, Tonhauser 
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and Roberts (2017), Bledin and Rawlins (2018) and Holguín (2019). In particular, Seth Yalcin’s 

and Alejandro Pérez Carballo’s  inquisitive models of belief anticipate certain aspects of my 

account, and are likewise motivated by concerns related to logical omniscience.

Robert Stalnaker’s (1991) proposal for a question-and-answer model of belief is a more 

ambiguous precedent. He describes the idea only to reject it thus: “even if we had a satisfactory 

account of accessibility for the question-and-answer model, it would not be clear how to 

generalize it to an account of knowledge and belief in terms of capacities and dispositions to use 

information (or misinformation) to guide not just ones question-answering behaviour, but one’s 

rational actions generally. For we want an account of knowledge and belief, not just for expert systems 

and people who staff information booths, but for all kinds of agents.” (Stalnaker 1991, p. 253-4, my 

emphasis.) In this dissertation I seek to answer Stalnaker’s challenge, providing an account that 

has the generality he demands here. To my knowledge, it is the first attempt at a systematic and 

general theory of the role of questions in practical deliberation and decision making.

As I said, the classical view (1.1) I am looking to adjust is widespread, and comes in many 

forms. For Hartry Field (1978), the pieces of information are declarative sentences in natural 

language, and belief involves the storage of such sentences in memory so that they can be used 

in deliberation. Jerry Fodor (1978, 1980) held that beliefs are sentences in an internal language 

whose tokens causally affect the agent’s actions. Fred Dretske (1988, ch. 4) said the propositions 

expressed by those internal representations explain the behaviour, not the representations 

themselves. Daniel Dennett (1971, 1975) agreed that propositions do the explaining, and claimed 

the internal representations could therefore be disposed of. And “propositions” could be many 
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things: syntactically structured entities (Carnap 1947, Cresswell 1985, King 2007), map-like 

entities (Camp 2007), sets of possible worlds (Hintikka 1962, Stalnaker 1984), sets of (im)possible 

worlds (Barcan Marcus 1983, Smets and Solaki 2018), or sets of world-plan pairs (Gibbard 2003).

Besides all these different conceptions of information, there is a further dimension of variation 

worth highlighting, namely the way belief interacts with other attitudes to arrive at a decision. 

Standard belief/desire psychology has it that beliefs combine with desires, goals, plans or 

utilities to arrive at a decision. But on Alan Gibbard’s Aristotelean view, agents have beliefs 

about “what to do,” making decisions on the basis of their beliefs alone, without the admixture 

of a separate desire attitude (Gibbard 2003). According to Michael Bratman (1984, 1999), the 

expression of beliefs and desires through action is mediated: intentions and plans are the direct 

guides of action, and beliefs and desires affect action indirectly, by constraining the formation of 

those intentions and plans. Other endorsements of the classical view (1.1) in one form or other 

can be found in Peirce 1878, Ramsey 1926, Hempel 1962, Savage 1972, Millikan 1986, 

Schwitzgebel 2002 and Friston and Mathys 2017.

I do not pretend to be giving a blanket refutation of all these multifarious theories of belief. 

Rather, I am offering a positive suggestion: I think that any account of belief stands to gain from 

acknowledging the role of questions, and one aim of this chapter is to motivate theorists of 

belief of all stripes to join the inquisitive turn. Most of those just cited endorse the classical view 

(1.1) only as a rough, ceteris paribus generalisation about the connection between belief and 

action. The inquisitive view (1.2) is intended as an improvement on that coarse approximation. 

What is more, it is an improvement that can achieved without going beyond the intentional 
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level. That is to say, (1.2) still accounts for a belief’s role in behaviour purely in terms of its 

content, rather than resorting to lower-level types of explanation in terms of the computational 

or neurological realisation of the belief.

In sections §1.1-2 below, I will examine the motivation for the inquisitive view of individual 

beliefs in greater detail. The remainder of the chapter exhibits a formal and precise way to 

articulate the inquisitive view (1.2). §1.3 gives an account of inquisitive belief contents, saying 

just what is meant by “an answer to a question”. §1.4 says what it is for an agent to face a 

question, and for a particular choice to confront an agent with a question. §1.5 completes the main 

task of the chapter, discussing what, exactly, it takes for an agent to act on an answer to a 

question. §1.6-7 examine the decision-theoretical framework set up in §1.4 a bit more carefully, 

bringing out some issues that the initial presentation glosses over.

1.1  Recognition and Recall 

In the ROMEO RECALL example we just examined, Juliette succeeds in recognising the last digits 

of Romeo’s phone number but is unable to reproduce them. With phone numbers that is often 

the way: recognition is somewhat easier than recall. But as the following story shows, that is not 

always the case (based on Elga and Rayo 2019, Powers 1978):

TRIVIAL TROUBLE: Travelling abroad, Tom is accosted by a fearful sphinx. “Don’t 

worry yourself darling,” she says, pinning him gently but firmly to the ground, 

“I’ve eaten. But I will make you wealthy if you solve me this riddle: name an 

English word that ends in the letters ‑MT.” Tom racks his brain, but in the end 
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admits defeat. Turning to leave, the sphinx remarks: “You’re not the brightest bulb, 

are you now? I could have done this in my sleep!” That night, Tom writes a letter 

home: “I never dreamt that sphinxes were real!” Then he reads it back 

incredulously: “D‑R‑E‑A-M-T”.

Here Tom fails to recognise the word “dreamt” based on its last two letters, although he later has 

no trouble reproducing those same letters. As with Juliet, when we try to analyse Tom’s 

behaviour classically, we quickly run into trouble. The issue this time is whether or not Tom has 

the information that the word “dreamt” (or /drεmt/) is spelt D-R-E-A-M-T. On the one hand, Tom 

dramatically fails to act on this information during his encounter with the sphinx: else he would 

have answered correctly and walked away with wealth untold. So to explain Tom’s actions at 

that point classically, we must say he lacks this information. But then how is he able to spell the 

word correctly later on? How can Tom be acting on the information then, unless he had it all 

along? The upshot is that, whether we say that Tom has this information or not, we cannot 

explain both actions classically. There is no satisfying classical explanation for the contrast 

between Tom’s behaviour when quizzed by the sphinx and when writing his letter.

The inquisitive picture, by contrast, yields a straightforward account of this case: the sphinx 

confronts Tom with the question Which words end on ‑MT; but when writing his letter, he is 

intuitively confronted with a different question: How to spell “dreamt”. Tom knows “dreamt" ends 

in ‑MT in response to the latter question; but that is no guarantee that Tom also has the 

informationally equivalent answer to the former question –– and as his behaviour shows, as a 

matter of fact he does not. 
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At the end of TRIVIAL TROUBLE, Tom reads back his letter with the sphinx’s question in mind, 

and experiences what he would describe as an epiphany. It is clear what to say about this on the 

inquisitive view: Tom has found the answer he was missing before, that “dreamt” is a word 

ending on -MT. On the classical picture, it is hard to say what changed for Tom. The only 

classical way to discover something new is to obtain a new piece of information. But what could 

it be? It cannot be the information that “dreamt” ends in -MT: Tom had it ever since he learned to 

spell. So the classical theorist looks to be at a loss to say what Tom’s discovery consists in, or 

what explains his newfound ability to answer a question he could not answer before. 

An analogous point applies ROMEO RECALL. Suppose we add a happy ending to the story: Juliet 

thought to bring the note with her! She takes it out of her pocket in the phone booth, and dials 

the digits she could not recall. But what does Juliet expect to learn from reading the note, 

exactly? Once again, only the inquisitive view has a satisfying answer. Thus both case studies 

demonstrate a further important advantage of the inquisitive view: it allows for the possibility 

of forming new beliefs without acquiring new information, something that should not be 

possible on the classical view. In Chapter 2, we will see how this feature of the inquisitive 

picture can be used to help us understand the nature of deductive reasoning.

The potential for more examples in the spirit ROMEO RECALL and TRIVIAL TROUBLE is boundless. 

For inspiration, consult the literature on memory retrieval or your nearest crossword. Song 

lyrics are also a nice source of examples. You might know the lyrics to a song, but that does not 

mean you will recognise the song based on a lyric, and vice versa. The more you look, the more 

you realise that our lives are designed around cognitive asymmetries that the classical picture 

has no accounting for.

14



1.2  Cognitive Failures and Classical Coherence 

Both in the case of ROMEO RECALL and TRIVIAL TROUBLE, defenders of the classical picture may 

seek to explain away what seem like false predictions of their account by chalking them up to 

cognitive failures of some sort. Deep down, Tom had the answer to the sphinx’s riddle, but due 

to some fluke or snag he was unable to use it. It was the nerves, maybe; or maybe he 

momentarily forgot. Whatever it was, some cognitive mishap prevented Tom’s normal doxastic 

dispositions from displaying themselves on this occasions.

In response, let me begin by noting that Tom would have been equally floored by the question 

Which words end on -MT in the context of a crossword: the nerves are not really essential to the 

case. But more importantly, these attempts to explain Tom’s actions in terms of cognitive failure 

seem to get other facts about his behaviour wrong. Firstly, if Tom’s access to the information 

that “dreamt” is spelt D‑R-E-A-M-T really was temporarily cut off, then Tom should have been 

equally stumped if the sphinx had asked him How do you spell the word “dreamt”. But in fact he 

could probably field that question easily. Secondly, these explanations imply that under less 

stressful circumstances, Tom does have the ability to reproduce the word “dreamt” based only 

on the letters ‑MT. But if Tom is like most English speakers, that is simply not true. Master 

scrabblers and crossword mavens aside, most people have great difficulty recognising words 

based on just a few letters. As it happens, this particular cognitive limitation is extremely well-

documented, since psychologists frequently use word completion as a memory test: see for 

instance Phillips 1966, Nelson and McEvoy 1984, Olofsson and Nyberg 1995.
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The cognitive failure response does not address the fundamental issue, which is that according 

to the classical picture, the ability to reproduce the final letters of “dreamt”, if it is to be explained 

in terms of beliefs at all, should always come and go together with the ability to recognise the 

word on the basis of those letters. For on the classical picture, both abilities are different 

manifestations of the same belief: namely the belief that “dreamt” ends in -MT. But as a matter of 

psychological fact, these two cognitive abilities are basically independent. This phenomenon is 

far too robust and systematic to be written up to unexplained “slips of the mind”. We need an 

account that does not lump these distinct cognitive abilities together, but instead associates 

them with different beliefs. The inquisitive picture does just that. It distinguishes two different 

ways of having the information that “dreamt” ends in -MT. You can have it in answer to the 

question How to spell “dreamt”: that belief gives you the ability to reproduce at least those two 

letters. Or you can have it in answer to the question Which words end in -MT. This latter belief is 

far less useful and far less common: having it allows you to recognise the word “dreamt” on the 

basis of its last two letters.

The classical view of individual beliefs (1.1) assumes the following coherence principle:

Classical Coherence: If on some occasion, an agent acts on a piece information 

because of their beliefs, then that agent is in general disposed to act on that 

information. (1.3)

In other words, it is all or nothing: either we have no belief-based explanation of the fact that an 

agent acted on some information, or we are on the hook for a general disposition. That is what 

got the classical view into trouble in the examples above: we cannot give a classical doxastic 
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explanation for Tom’s spelling of the letter, or for Juliet’s response to the note, without 

attributing to these agents a broad disposition that they simply do not possess.

A common response to cases like ROMEO RECALL and TRIVIAL TROUBLE is to jettison classical 

coherence entirely. The temptation is to allow pervasive failures of the disposition to act on the 

information you have. This makes for something like the following view: belief is the possession 

of a piece of information, manifesting itself in a disposition to act on that information 

occasionally. According to Davidson 1976, there is no systematic accounting for the exceptions: 

glitches galore! One can also try a more systematic approach. Perhaps we act on the information 

only when the belief in question is “active”. Only when we think of the belief. Only when the 

belief makes it into your mental decision-making module. Only when the agent is paying 

attention to the right things. Only when the decision is in a certain practical domain. One 

sophisticated version of such an account is Elga and Rayo’s (2019) fragmented decision theory, 

examined in §3.3 below. Another approach stems from the awareness literature in computer 

science and renders (explicit) belief relative to what the agent’s state of attention (Fagin and 

Halpern 1988, Sim 1997, Franke and De Jager 2011, Schipper 2015, Fritz and Lederman 2015).

Now I agree that the classical coherence principle is false. But I think such radical weakenings of 

the classical picture throw out the baby with the bathwater. Let me count the ways. Firstly, this 

sort of move substantially undermines the force of ordinary belief-based explanations and 

predictions. Suppose you ask why Mary eats beans every day, and I answer that Mary thinks 

eating beans every day will keep her healthy. Given the regular classical view, that makes for a 

perfectly good explanation, assuming Mary wants to stay healthy. But on the weak version, 
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Mary’s belief by itself only yields an expectation that she will eat beans from time to time. 

Secondly and relatedly, doxastic dispositions are in fact about as stable as our beliefs 

themselves, as the classical picture says they should be. This is true for Tom’s disposition to 

spell “dreamt” D-R-E-A-M-T: he always spells it that way. If he started spelling it D-R-E-A-M-E-D, 

you would conclude he had changed his mind about the spelling, not that his belief had failed 

to activate. What the classical picture got wrong was the nature of Tom’s behavioural 

dispositions, not their stability. Thirdly, it is unclear, on the weakened account, why you should 

ever think someone lacks a belief. Say you see me calmly munch a ham sandwich. Ordinarily, 

you might conclude that I do not believe the sandwich is poisoned. But if I act on my beliefs 

only occasionally, that conclusion is not justified.

Finally, and perhaps most importantly, one of the core functions of belief attributions is to give a 

unifying explanation of an agent’s actions across domains. For instance, suppose Bianca 

believes that there will be a blizzard this afternoon. This explains such varied actions as her 

choice of clothing, transportation, what she says to her colleagues at the water cooler, and her 

decision to check if her flight is on time. What is more, that same belief predictably and 

systematically affects Bianca’s response to an infinite range of familiar and unfamiliar decision 

situations in which blizzards are somehow relevant. This is in large part why beliefs are so 

useful, and reasoning in terms of them is so powerful. Bianca tells you about the blizzard at the 

water cooler, and you conclude she probably took the bus today, rather than cycling to work. 

But if Bianca’s conversation were governed by beliefs that control only her verbal behaviour, 

say, you would have no reason to think that. For all its faults, this is something the classical 

picture gets right: it predicts that Bianca’s blizzard belief comes out in all these different ways. 
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We should be loathe to replace it with a theory that lacks that core virtue. Of necessity, we will 

spend much of this dissertation examining the limitations of the classical view. But as we 

discuss bathwater and how to dispose of it, let’s not forget we also have a baby to save.

The real moral, then, is that classical coherence needs to be replaced with something equally 

systematic. The inquisitive view is that a belief is the possession of an answer to a question, and 

manifests itself in a general disposition to act on that answer when confronted with that 

question. That builds on a modified coherence principle:

Inquisitive Coherence: If on some occasion, an agent acts on an answer to a 

question because of their beliefs, then that agent is disposed to act on that answer 

whenever they are faced with that question. (1.4)

Inquisitive coherence retains the stability and reliability of belief-related dispositions, and, as I 

shall argue in Chapter 2, it accounts for the unifying role of belief attributions as well.

1.3  Questions and Quizpositions 

In this section, I want to flesh out the first conjunct of the inquisitive view of individual beliefs: 

belief is the possession of an answer to a specific question, rather than a general piece of 

information about the world. I will take it as a given that belief is a relation between agents and 

propositions of some kind. But instead of pieces of information, the objects of belief are question-

directed propositions, or quizpositions for short. The defining characteristic of a quizposition is that 

it is jointly individuated by its informational component and the question it answers.
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Below I will give a formal articulation of this notion using the possible worlds framework. The 

standard possible worlds conception of a proposition is that of a set of possible worlds, or a 

region of logical space 𝒲 –– call that an intensional proposition. But hyperintensional 

conceptions of propositions can and have also been articulated within the possible worlds 

framework, as for instance in Groenendijk 2009 and Yablo 2014.

Our first job is to say what a question is. In English, the word “question” is regrettably 

ambiguous between a certain kind of expression, also known as an interrogative clause, and the 

contents of expressions of this kind. Suppose I ask Anna “When is the next U.S. presidential 

election?”, I ask Brian “When will Americans vote for their next president?”, and I ask Cécile 

“Quand aura lieu la prochaine élection présidentielle aux États-Unis?” Then I have asked all 

three a different question in the former sense, since I used different words. But in the latter sense 

I asked them all the same question, because these three interrogative expressions are all 

(approximately) synonymous. Throughout this dissertation, I use the word “question” in this 

latter sense only, unless  explicitly indicated otherwise. In linguistic semantics (Hamblin 1958, 

Groenendijk and Stokhof 1984), one standard account of the content of an interrogative is as a 

partition of the space of possibilities.2

A (partition) question Q is a partition of logical space 𝒲. The cells q ∈  Q of this 

 In principle, the use to which I am putting partition questions here is totally separate from their role in 2

linguistics. I am certainly not relying on a particular semantics of interrogatives. Even if they had no link 
to natural language at all, one could still maintain that partition questions play a role in explaining 
behaviour. But the connection with natural language does give the inquisitive picture of belief-guided 
action a lot of intuitive appeal. And once we get to implementing some of these ideas into an inquisitive 
semantics of belief reports, the link with linguistics most definitely comes in helpful (see Yalcin 2011, §8).
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partition will be called Q-cells. When two worlds w and v share a Q-cell, we write 

w ~Q v. Any set of Q‑cells A ⊆ Q is an answer to Q. (1.5)

The idea here is to characterise question content in terms of the information that is required to 

answer the question exhaustively. Take for instance the question How many daughters did Joel 

Russ have? Its complete answers are Russ had no daughters, Russ had just one daughter, Russ had 

exactly two daughters, and so on. Together, these possibilities cover all of logical space, and 

because the answers are exhaustive, they are incompatible with one another. Thus they jointly 

form a partition D of 𝒲.  Any disjunction of complete answers to this question makes a partial 

answer: for instance Russ had less than three daughters, Russ either had five or twelve daughters, Russ 

had an odd number of daughters, and so on. For two possible worlds w and v, w ~D v just in case 

Russ had the same number of daughters at w and at v.

With this notion of a question in hand, the natural way to model a quizposition is as an ordered 

pair of a partition question and a (possibly partial) answer to that question:

A question-directed proposition or quizposition is an ordered pair 〈Q, A〉, also 

denoted AQ, the first member of which is the partition question Q that AQ is said to 

be about, and the second member of which is a Q-answer A ⊆ Q. The quizposition 

AQ is true at a Q‑cell q if and only if q ∈ A, and it is true at a world w if and only if 

w ∈ ⋃A. (1.6)

Quizpositions are discussed and axiomatised in Goodman 2018 (§7.1) and they are similar to the 

semantic objects found in Groenendijk 2009, Yablo 2014 and Fine 2017.
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To connect this to our discussion above, let S be the partition question How do you spell “dreamt” 

and E the question Which English words end on -MT:

w ~S v    iff    the word /drεmt/ has the same spelling at w and v, 3

w ~E v    iff    at w and v, the same English words end on -MT

Think of the word “dreamt” (or /drεmt/) as individuated phonetically here. The partitions S 

and E are very much distinct. Each cell s ∈ S represents a possible spelling of “dreamt”; each cell 

e ∈ E represents a possible list of words ending in -MT. Now let M be the set of all S‑cells that 

represent a spelling ending in -MT, and let W be the set of E‑cells in where “dreamt” is on the 

list. Then the quizposition MS and WE have the same truth-conditions, but they answer very 

different questions. Below, we will explain Tom’s ability to reproduce the final letters of 

“dreamt” in terms of his belief in the quizposition MS. At the same time, the inquisitive picture 

affords us the flexibility to deny that Tom believes the informationally equivalent proposition 

WE, which will account for his inability to answer the sphinx.

In spoken English, focus in attitude reports appears to mark this cognitive distinction 

(cf.  Dretske 1981, Blaauw 2013, Simons, Beaver, Tonnhauser and Roberts 2017). Intuitively, 

saying “Tom thinks/knows that ‘dreamt’  is a word ending in -MT ” entails that Tom can spell 

the last part of the word, but not necessarily that Tom will recognise the word based on those 

two letters. But if you say “Tom thinks/knows that ‘dreamt’  is a word ending in -MT,” it is the 

opposite. (Try saying it out loud!) It has long been known that in spoken language, focus is 

 To account for the possibility that /drεmt/ may not have been an English word, it should perhaps be 3

added that w ~S v whenever the word /drεmt/ has no spelling at w and v. 
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associated with questions or alternatives, and this corroborates the idea that a question-based 

analysis is the right account for this contrast.

It is worth emphasising that the particular possible worlds treatment just outlined is just one 

way to realise the concept of a quizposition. Alternatives are easily imagined. For instance, if 

your conception of a piece of information is a written sentence, then the inquisitive variant 

could be a pair of an interrogative and a declarative sentence, or a sentence with a marked 

focus. You could also integrate focus or contrast classes into an account of propositional 

structure to get Russellian quizpositions. The inquisitive turn can take you different places 

depending on your starting point.

And even if you accept definitions (1.5-6) as written, there is some amount of leeway in the 

interpretation of the background logical space 𝒲. For our purposes, it will be easiest to assume 

throughout that 𝒲 is the space of metaphysical possibilities. But one can add a second layer of 

hyperintensionality to the inquisitive picture by admitting certain well-behaved metaphysical 

impossibilities into 𝒲. It may for instance be possible to make sense of worlds where unicorns 

exist, or worlds where Hesperus and Phosphorus are distinct, or worlds where the 

mathematical facts are different (see Colyvan 2000, Schwarz 2013, Rayo 2013, Bacon 2018, and  

also §5.6 below).4

 Logicians like Hintikka (1975), Levesque (1984), Priest (2005), Bjerring (2013), Smets and Solaki (2018), 4

Berto and Jago (2019) contemplate more radically impossible worlds, at which contradictions can be true. 

Such worlds are not closed under classical consequence. Admitting them would make for a completely 

different formalism, and I think it would be difficult to formulate a cogent decision theory on this basis.
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1.4 Facing Questions 

The inquisitive view of belief and action connects beliefs to choices via questions. In the last 

section, we articulated a view of belief contents that connects beliefs to questions. In this section, 

I supply the missing part, and connect questions to choices. This starts with a very basic, pre-

theoretical observation made in the introduction: choices confront us with questions. Setting a 

time for a lunch date, you need to know What time do we both finish work? Selecting a wine for the 

colloquium dinner, you wonder Which one will make me look knowledgable? Deciding which child 

to reproach, you confront the question Who lit the curtains on fire? And so on. The link between 

choices and questions pervades our ordinary thinking about decision making (see also Van 

Rooij 2013, Koralus 2014). And not in some hidden, subconscious way: idioms to describe hard 

choices in terms of asking and confronting questions exist in every language.  5

Now that we have noticed this connection, we can ask what it consists in. Here it will be useful 

to look to standard developments of decision theory for inspiration, where payoff matrices are 

used to represent decision situations. Below is an arbitrary example, taken from Jeffrey 1990. 

This table represents a decision situation in which somebody is choosing whether to bring red 

 Every language I have checked, that is. For example, “We are faced with a question” (English), “Wir 5

standen vor der Frage” (German), “On fait face à une question” (French), “Miàn-lín yī-gè wèn‑tí” 

(Mandarin Chinese). Similar expressions exist in Dutch, Italian, Spanish, Serbian, Turkish and 

Shanghainese. With thanks to my informants Vera Flocke, Simona Aimar, Andrés Soria Ruiz, Louis 

Rouillé, Milica Denić, a student at Bilkent University and Linmin Zhang. Another linguistic factoid in this 

spirit: in Dutch and Spanish, the cognates of “question” do not refer to spoken questions at all, and 

instead mean something like problem or dilemma (“kwestie” and “cuestión” respectively).
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wine, white wine or rosé to a dinner party. Each option corresponds to a row in the table. They 

want to get a good match, and so the payoff depends on what turns out to be for dinner: white 

wine goes well with chicken or herring, but badly with beef. Red wine goes OK with chicken, 

better with beef and terribly with herring. And so on:

TABLE 1: WINE SELECTION

Now what I want to draw attention to are the column headings of the table, representing the 

world states on which the outcome of this agent’s actions depend. In this particular case, the 

three headings  “Chicken,” “Beef” and “Herring” are possible dinners: it could be that there’s 

chicken for dinner, it could be that there’s beef for dinner, and it could be that there’s herring for 

dinner. Now these three possibilities are mutually exclusive and exhaustive (or so we pretend 

for purposes of reading the table). Thus they form a partition of logical space, which is to say, a 

question in the sense defined above. More specifically, this partition is the question What will be 

for dinner. Intuitively speaking, that is exactly the question this choice raises for the agent.

What a serendipitous discovery! On our way to integrating questions into decision theory, we 

find that they were there all along. Every major formal treatment of decision theory appeals to 

partitions of logical space into world states at the fundamental level (Savage 1972, Jeffrey 1990, 

Gibbard and Harper 1980, Lewis 1981, Joyce 1999, Ahmed 2014). These partitions just have not 

Chicken Beef Herring

White l 1 –1 1

Red l 0 1 –1

Rosé l 0.5 0 –1

25



typically been thought of as questions, and their role in determining behaviour has been largely 

ignored. But really, the questions we face in confronting decisions were always hiding in the 

classical formalism, waiting for an inquisitive theory to seek them out and grant them their 

proper place in decision-making.

Formally, we will want to characterise a choice or decision problem in a way that does not build 

the question partition in at the outset, and then define the question raised in terms of the 

features of this decision problem. We will use the following definition of a decision problem:

An option is a real-valued function a: 𝒲 → ℝ from possible worlds to utility 

values. A decision problem ∆ is a finite, nonempty set of options. (1.7)

This is quite an abstract way to represent choices. The issue what exactly it takes for a concrete 

choice to instantiate a decision problem ∆ is complex, and in §1.6-7 below I will say more about 

this foundational issue. But for now, we can make do with a rough gloss: a choice instantiates ∆ 

just in case each of the actions that the agent is choosing between is represented by some option 

a in ∆, in that the value a(w) accurately represents the desirability of the outcome that, at w, 

would have been obtained as a result of choosing the action.

An outcome matrix like table 1 above represents a particular decision problem. Each row 

represents a function from possible worlds to real numbers, listing its values with respect to the 

worlds in each column. The table is a collection of rows, representing a set of options: a decision 

problem as defined in (1.7) above. To enable this representation, the column partition must only 

group worlds together where each option takes a constant value. That is, the column partition 
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has to be a question addressing the decision problem, where this is defined as follows:

The choice ∆ raises the question Q, or Q addresses ∆, just in case for every option 

a ∈ ∆, and every cell q ∈ Q, the outcome a(w) takes on a constant value for all w ∈ q. 

This constant value can be denoted ‘a(q)’. An agent faces the question Q whenever 

they make a choice that raises Q. (1.8)

An intuitive gloss on (1.8) is that a question addresses a choice just in case any complete answer 

to the question will tell you what the outcomes of all the options would be. For instance, in the 

table above, knowing whether chicken or beef or herring is for dinner is all you need to know to 

know the payoffs of the various wine choices.

Now observe that if knowing whether chicken or beef or herring is for dinner is sufficient to 

know the payoffs of all the options, then knowing whether chicken or beef or Atlantic herring or 

Pacific herring is for dinner is definitely sufficient. Thus, given definition (1.8), the question 

Chicken, beef, Atlantic herring or Pacific herring?, which makes one more distinction than the 

tripartite question Chicken, beef or herring?, also counts as addressing this same decision 

problem. Making still more distinctions does not alter that fact, as illustrated by table 2 below. 

Tables 1 and 2 are just alternative representations of the same decision problem. That means that 

in general, multiple questions will address a given decision situation. This feature of definition 

(1.8) will become crucially important in Chapter 2: whenever some question Q addresses a 

decision problem ∆, any question that forms a more fine-grained partition than Q also 

addresses ∆.
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TABLE 2: FINER DISTINCTIONS

Now consider the choice one faces when writing down the word “dreamt”. Your options are all 

the various letter combinations you could be writing down: D-R-E-A-M-T, D-R-E-A-M-E-D, and so 

on. Your aim, let’s say, is to spell the word correctly, and so there are only two outcomes: success 

and failure, 1 and 0. Which of those outcomes will result from which action depends on what 

the correct spelling of the word in fact is. In the actual world, the word is spelt D-R-E-A-M-T, so 

that writing D-R-E-A-M-T leads to success and other spellings would lead to failure. But relative 

to possible worlds where the correct spelling is the sensible D-R-E-A-M-E-D or the phonetic D-R-E-

M-T, writing D-R-E-A-M-T would lead to failure, and some other option yields success:

TABLE 3: SPELLING “DREAMT” (∆Letter)

The column headings of this table form the partition question S, How is / drεmt/ spelt? So in 

TRIVIAL TROUBLE, we can explain Tom’s spelling in the letter in terms of the fact that he has the 

Chicken 
Breast Drumsticks Chicken 

Soup Beef Atlantic 
Herring

Pacific 
Herring

White I 1 1 1 –1 1 1

Red I 0 0 0 1 –1 –1

Rosé I 0.5 0.5 0.5 0 –1 –1

/drεmt/ is spelt  
D-R-E-A-M-T

/drεmt/ is spelt  
D-R-E-A-M-E-D

/drεmt/ is spelt  
D-R-E-M-T

…

write D-R-E-A-M-T 1 0 0 …

write D-R-E-A-M-E-D 
l

0 1 0 …

write D-R-E-A-M-P-T 
l

0 0 0 …

… l … … … …
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belief MS, that The word / drεmt/ ends in -MT: MS guides Tom’s choice here because it answers S, 

and S addresses this problem, ∆Letter. (Presumably he believes MS as part of a complete S-answer, 

The word / drεmt/ is spelt D-R-E-A-M-T –– more on that in Chapter 2.)

In his confrontation with the sphinx, Tom has a very different set of options, and the outcome of 

his choice depends on a different feature of the world. This time he is choosing between 

possible replies to the sphinx. Besides confessing ignorance, Tom could have ventured an 

answer, like “prompt” or “unkempt”:

TABLE 4: ANSWERING THE SPHINX (∆Sphinx)

In the actual world, the only winning reply is “dreamt”, since that happens to be the only 

English word ending in -MT. But in a world with different spellings, “dreamt” would yield 

failure, and “prompt” success. And so on: thus ∆Sphinx raises the question E, Which English words 

end on -MT? So on the inquisitive picture, the expectation is that Tom’s choice in ∆Sphinx is 

guided by his views on E. We can account for Tom’s failure to produce the correct answer in 

terms of the fact that Tom had no beliefs about E (see also §3.4 below). Tom’s view on S, though 

it is in some sense relevant, did not help him out here, because S fails to address ∆Sphinx. Take for 

instance the S-cell The word / drεmt/ is spelt D-R-E-A-M-E-D. This entails that the reply “dreamt” 

Only /drεmt/ 
ends in -MT

Only /ʌn’kεmt/ 
ends in -MT 

Only /ʌn’kεmt/and  
/prɒmt/ end in -MT …

reply /drεmt/ l 1 0 0 …

reply /prɒmt/ l 0 0 1 …

reply /ʌn’kεmt/ l 0 1 1 …
… n … … … …

confess ignorance l 0 0 0 …
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would lead to failure, but it says nothing about the other replies: knowing the answer to S is 

nowhere near sufficient for knowing the outcomes of the options in ∆Sphinx.

This contrast between ∆Letter and ∆Sphinx draws on objective differences in the pattern of 

counterfactual dependence between the available actions and their outcomes. The explanation 

for why Tom’s belief MS guides his choice in ∆Letter but not in ∆Sphinx is not that Tom happens to 

think of the question S only in that former situation. Absent a reason why he should think of S in 

that situation, this would not be a complete explanation of the contrast. Rather, the inquisitive 

theory explains the pertinence of the belief MS to the choice ∆Letter without appealing to Tom’s 

assessment of the situation. This objectivity is essential to the predictive and explanatory power 

of the account.6

According to the inquisitive picture I want to propose, it is in some sense the world that 

interrogates the agent, not the agent who interrogates themselves. That is why the sphinx from 

Greek mythology makes an apt metaphor: a sphinx jumps at you from the outside, forcing you 

to answer her question. Of course the world only rarely dispatches flesh-and-blood messengers 

to interrogate us. The vast majority of questions we face are posed through other means: forks 

in the road, supermarket aisles and unmarked shower controls. Our replies are also mostly non-

verbal: turning right, picking the Greek yoghurt, or opening the tap on the left.

 The question you face is independent of your interpretation of the situation, but it does depend on your 6

mental state in at least one way. If you want to go to the baker, the crossroads confront you with the 
question Which way is the baker. But if you want to go to the butcher, the very same crossroads confront 
you with the question Which way is the butcher. The reason is that your goals and preferences go into 
determining how the outcomes of your choice are ranked and individuated, which affects what decision 
situation you are in. As discussed in §1.7 below, there may be further ways in which the decision  
situation one is in depends on one’s mental states.
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Again, I am just providing one possible articulation of that basic idea here. In particular, as we 

will see in §1.6, the characterisation of an option in (1.7) assumes a causal-counterfactual 

approach to decision theory. It also presupposes Stalnaker’s logic for counterfactuals: this is 

needed to guarantee that for any possible world w and option a there is such a thing as the 

unique outcome a(w) that a would have had given the facts at w (even if a is not in fact chosen 

at w). These assumptions simplify the formalism. But they are not, I think, essential. In 

particular, an evidential version of inquisitive decision theory could certainly be envisaged.

1.5  Acting on Answers 

Using the formal framework developed above, we can now provide completely formalised 

articulations of the classical and inquisitive views  (1.1) and (1.2) that we started out with. The 

only missing puzzle piece is a precise notion of what it takes to act on a piece of information, or 

on an answer. One natural way to spell this out is using the notion of dominance:  

Suppose a and b are options, and p ⊆ 𝒲 is an intensional proposition. Then option a 

(strictly) p‑dominates option b just in case a(w) > b(w) for all w ∈ p. An option a ∈ ∆ 

is p‑dominant just in case a strictly p‑dominates every other option in ∆, and is 

p‑dominated just in case ∆ contains an option b that strictly p‑dominates a. (1.9)

Individual Beliefs (Classical Formalisation). Belief is a relation between agents and 

intensional propositions. An agent believing the proposition p is always disposed to 

avoid p‑dominated options whenever there are any. (1.10)
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Note that avoiding all p‑dominated options if there are any entails performing the p‑dominant 

option if there is one. The analogous formalisation of the inquisitive view (1.2) runs as follows:

Suppose a and b are options in a decision situation that raises Q, and A is an answer 

to Q. Then a (strictly) A-dominates b just in case a(q) > b(q) for all q ∈ A. (1.11)

Individual Beliefs (Inquisitive Formalisation). Belief is a relation between agents 

and quizpositions. An agent believing the quizposition AQ is disposed to avoid 

A‑dominated options in decision situations that raise Q. (1.12)

With these formal restatements of the classical and inquisitive views in place, our analysis of 

TRIVIAL TROUBLE can now be run entirely within the formalism. Recall Tom’s letter-writing and 

Sphinx decision problems ∆Letter and ∆Sphinx, displayed on p. 28 and p. 29 respectively. Suppose 

we want to predict Tom’s response to ∆Letter on the basis of (1.10). Then we need to attribute 

some belief p to Tom such that writing D-R-E-A-M-T is the p-dominant course of action in ∆Letter. 

Inspection of the table shows that this proposition p will have to entail that / drεmt/ is spelt 

D‑R-E-A-M-T. But if p entails this, then replying “dreamt” in ∆Sphinx beats replying “I don’t know” 

at every p-world. Given (1.10), we thus get the incorrect prediction that Tom is disposed to 

forego the latter action in favour of the former. Again, we find that the trouble with the classical 

account is that we cannot secure the right prediction about ∆Letter without slipping into the 

wrong prediction about ∆Sphinx. By contrast, if we attribute to Tom a belief in the quizposition 

MS, then (1.12) correctly predicts Tom’s choice in ∆Letter, since ∆Letter raises the question S to 

which that belief is an answer. But this same attribution does not commit us to a prediction 

about Tom’s behaviour in ∆Sphinx, because S does not address that decision situation.
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The dominance-based formulations (1.10) and (1.12) rule out any hedging against the possibility 

that your beliefs could be false. This aligns with an epistemological tradition that identifies full 

or outright belief with absolute doxastic certainty, entailing credence 1 (Ramsey 1926, Hintikka 

1962, Clarke 2013, Greco 2015a, Moss 2018, Williamson 2018). Even if it can seem a bit artificial, 

this simple, strong notion of full belief has substantial theoretical advantages, and that is why it 

will be our topic in Chapter 2. So for now, let’s agree to use the word “belief” this way.

But I do not really mean to prejudge to what extent the ordinary, natural language notion of 

belief resembles doxastic certainty. On that matter the inquisitive picture is ultimately neutral. 

Once inquisitive credences are on the table, it will be obvious how to formulate inquisitive 

versions of various subtler, weaker accounts of belief, like the Lockean view (Foley 1992, James 

Hawthorne 2009; see also Leitgeb 2014, Weatherson 2016). In fact, one emergent view of weak 

belief even requires an inquisitive setting (John Hawthorne, Rothschild and Spectre 2016, 

Holguín 2019).

1.6  A Counterfactual Savage 

The formal representation of options and decision problems introduced in §1.4 is a little bit 

idiosyncratic. It is a variation of the notion of an option pioneered by J.L. Savage (1973 [1954]), 

as a function from states of nature to outcomes. This is still the standard notion of an option 

used in economic theory. In this section, I compare my approach to Savage’s, and explain why I 

am setting things up a little differently.
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1.6.1  Actions and Functions 

Savage took options (or “actions” as he called them) to be functions from states of the world to 

outcomes. This formal representation of actions is intended to capture only those aspects of an 

action that are relevant to deliberation, and to abstract away from everything else. It builds on 

something like the following picture of deliberation. 

First of all, what matters to the agent about an action is its outcome, in the sense that we always 

act in the hope of achieving a certain sort of outcome. That outcome is distinct from the action 

itself. If I turn left, say, it is not in order to satisfy a craving for left turns, but rather because I am 

trying to get somewhere –– to the bakery perhaps. But agents are not always in a position to 

make decisions based on the outcomes that their actions will have (given the way things 

actually are), since they do not always know what those outcomes would actually be. This is 

where belief enters into deliberation. For instance, the outcome of a concrete act like turning left 

is not fixed: it depends on what the world is like. In this case, it depends on where the bakery is. 

So the choice-worthiness of the available actions is determined by where, given my beliefs, the 

action is liable take me relative to where I want to go. Thus, what matters about an available 

action from the standpoint of deliberation is the way in which the outcome of that action 

depends on what the world is like. A function from possible world states to outcomes is a 

natural representation of this dependence.

There are three important differences between Savage’s conception of an option and options as 

they are defined here. The first difference concerns the outcomes that are the output of these 

functions. On my definition, outcomes are real numbers, representing the amount of utility the 
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agent might obtain as a result of their choice. In Savage’s system, on the other hand, outcomes 

are concrete things or states that the agent obtains as a result of their action, and whose value is 

not specified. For instance, an outcome could be winning a car, hurting a knee, or arriving in 

Barbados. There is a reason for this difference: Savage’s aim was to analyse both desire and belief 

simultaneously. He was therefore not content to build the agent’s values and utilities into the 

characterisation of a decision problem, and needed a more neutral way to think about 

outcomes. By contrast, in this dissertation I am focussing on the analysis of belief, which puts 

me in a position to simplify matters by taking the utilities as given, and building them into the 

decision problems. (Another standard way to set aside foundational questions about utilities is 

to restrict attention to agents who are interested solely in monetary gain, and to decision 

problems where nothing but money is at stake.)

The second difference concerns the possibilities that an option takes as inputs. Savage’s options 

are functions from coarse-grained possibilities to outcomes. But in my formalism, the options 

take complete possible worlds as inputs.  Again, there is a reason for this contrast: it is part of 7

the present project (but not part of Savage’s project) to proffer a certain analysis of what it takes 

for a decision to confront an agent with a particular question. So for our purposes, it will not do 

to take a partition of logical space into coarse-grained world states as an unanalysed, primitive 

constituent of the decision problem. Rather, we need to represent decision problems in a way 

that is neutral with regard to the way logical space is partitioned into states of nature.

 It appears Savage was sympathetic to this variant of his approach. In §5.5 of the Foundations, Savage 7

suggests that from a God’s-eye point of view, the true representation of an action is a function from very 

fine-grained possibilities to utility values –– exactly as in definition (1.7).
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The third difference concerns the way an action A is supposed to relate a world state S to an 

outcome. Savage himself is, I think, ambiguous on this point. But the standard interpretation of 

Savage runs as follows. The outcome of an action A given the world state S is the unique 

outcome O that is entailed by the conjunction A is performed and S obtains –– A&S for short (see 

e.g. Joyce 1999, §2.2, Ahmed 2014, §1.6). So the option a is an accurate representation of the 

action A if and only if it maps every world state S to the outcome O entailed by A&S. Let me call 

this account of the relationship that actions, world states and outcomes bear to one another the 

conjunctive treatment of outcomes.8

The conjunctive treatment of outcomes presupposes two things about the way world states are 

individuated. Firstly, the world states S must be individuated finely enough, and the outcomes 

must be individuated coarsely enough, that the conjunction of any action A and world state S 

entails a particular outcome O. Secondly, the world states must be individuated coarsely 

enough that each action is compatible with each world state.

Now if the role of world states is to be played by a possible world, which are by definition 

individuated maximally finely, then this second condition is clearly not met. For at any possible 

world w, only one particular action Aw is performed, and only one particular outcome Ow is 

reached. So the conjunction A is performed and w obtains is inconsistent for all but one action A. 

Thus the conjunctive interpretation, straightforwardly applied, is not tenable given the 

definition of options as functions from possible worlds to outcomes. 

 The conjunctive treatment is adopted explicitly in the decision theoretical formalisms used by most 8

philosophers –– e.g. Jeffrey 1990 [1965], Gibbard and Harper 1980, Lewis 1981, Skyrms 1982, Joyce 1999.

36



But, as suggested in §1.4, this is not the treatment of outcomes I intend to adopt. I want to 

replace the conjunctive treatment of outcomes with a counterfactual treatment of outcomes. 

According to this treatment, the outcome associated with an action A and a world state S is the 

outcome O such that S entails the following counterfactual: if A had been performed, then the 

outcome O would have been reached (A  ⃞→ O for short). So a Savage-style option a accurately 

represents the action A if and only if it maps each world state S to the outcome O such that S 

entails A  ⃞→ O. In the present formalism, where the world states are possible worlds and the 

outcomes are utility values, this translates to the following: the option a accurately represents 

the action A if and only if it maps each world w to the utility value of the outcome O such that 

the counterfactual A  ⃞→ O is true at w.

This alternative treatment of outcomes relies on a substantive assumption about 

counterfactuals: namely that for any action A and any possible world w, there is a unique 

outcome O such that A  ⃞→ O is true at w. In order to secure this assumption, we need to appeal 

to Stalnaker’s analysis of counterfactuals, and in particular to the conditional law of the 

excluded middle (Stalnaker 1968, 1980).9

 Let Conditional Consistency (CC) be the (relatively uncontroversial) principle that given any consistent 9

antecedent φ, all consequents ψ such that ‘φ  ⃞→ ψ ’ is true must be consistent with one another. CC is 

validated by both Stalnaker’s (1968) and Lewis’s (1973) semantics for counterfactuals. Conditional 

Excluded Middle (CEM) is the principle that for any φ and ψ, either φ  ⃞→ ψ or φ  ⃞→ ¬ψ. CEM is 

validated only by Stalnaker’s semantics.

Now let A be any possible action and let the outcome partition be O1, O2, … , On. Since the partition is 

exhaustive, CC gives us that it cannot be true that A  ⃞→ ¬Oi for every i. By CEM, it follows from this that 

A  ⃞→ Oi for some outcome Oi. Since the outcomes are mutually exclusive, A  ⃞→ Oj cannot be true for 

any other outcome Oj, again by CC. Thus CC and CEM together ensure that A  ⃞→ Oi must always hold 

for some unique outcome Oi.
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In addition, the counterfactual treatment is aligned with causal rather than evidential decision 

theory. Roughly speaking, given this treatment of outcomes, the classical and inquisitive 

decision theories formulated in Chapter 3 end up saying that the choice-worthiness of an action 

A is determined by the agent’s credence that A would lead to the desired outcome. By contrast, 

evidential decision theorists hold that what matters is instead the agent’s conditional credence 

in the desired outcome on the assumption that the action A is performed.

Personally, I don’t find either of these commitments especially bothersome. Causal decision 

theory is by now the default position in philosophy, and while the conditional excluded middle 

remains controversial, it seems to be gathering followers by the day (see for instance 

Higginbotham 2003, Williams 2010, Klinedinst 2011, Kratzer 2015, Goodman 2015; for the classic 

debate see Lewis 1973, Stalnaker 1980). Moreover, the conditional excluded middle is in 

particularly good standing in the present context, because the classic formulation of causal 

decision theory, Gibbard and Harper 1980, also relies on the principle.

Furthermore, the counterfactual treatment of outcomes has substantial benefits. Most 

importantly for present purposes, the treatment allows for a simple formal characterisation of 

options and decision problems in a way that does not build in world state partitions at the 

outset. But there is also a broader, independent motivation for this way of thinking about 

outcomes. And that is the fact that the counterfactual treatment allows us to get around a 

difficulty that Richard Jeffrey (1974, 1982, 1990) raised for Savage’s formalism. As I will explain 

in the next subsection, the counterfactual treatment obviates the need for a separate stipulation 

that the world states be selected so as to be independent of the agent’s available actions. 
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1.6.2  Independence 

Jeffrey’s puzzle may be illustrated with the dilemma of Adam, who can either choose to go to 

the birthday party of his sweetheart Eve, or to stay at home and study for an important exam. 

Adam reasons thus: “Either Eve will not love me forever, or she will. If she will not love me 

forever, I should study: I may still die miserable and alone, but at least I will pass that exam. If 

she will love me forever, then I should study too, so that I can be both happy and successful. So 

either way, I should study.” It is widely agreed that something is wrong with the dominance 

reasoning Adam employs here. The reason is that Eve’s love for Adam might not be 

unconditional, and that it may be that Eve will only love Adam if he makes the sacrifice of 

coming to her party in spite of his exam. And if that turns out to be the case, then partying is in 

fact the wiser course of action.

The trouble is that Adam represents his decision in the following way, which makes it appear 

that the option of studying (s) strictly dominates the option of partying (p) (here “e” stands for 

the possibility that Eve loves Adam forever):

  e ¬e 

s       3 1

p 2 0

TABLE 5: STUDY OR PARTY? (ADAM’S MISREPRESENTATION)

Now from the perspective of the conjunctive treatment of outcomes, it is not immediately clear 

what is wrong with this representation of the choice. In particular, the conjunction that Eve loves 

Adam forever and Adam studies to pass the exam does entail that Adam gets everything he wants, 

while the conjunction that Eve will not love Adam forever even though he comes to her birthday party 

39



entails the worst possible outcome. And all that is true whether or not Eve’s love in fact 

depends on Adam’s choice. Thus the issue of whether going to the party might make Eve love 

him apparently becomes irrelevant to the analysis of this situation.

There is a standard fix that is made on behalf of Savage to avoid this repugnant conclusion. The 

fix is simply to add a constraint to the specification of a decision situation: the world states must 

always be in some sense independent of the action the agent will perform (this is causal or 

counterfactual independence for causal decision theorists, and evidential independence for 

evidential decision theorists; see Joyce 1999, Chs. 4-5). The trouble with the partition { e, ¬e } is 

that it does not satisfy this constraint: whether Eve will love Adam need not be independent of 

whether he goes to Eve’s party or not. However, as Jeffrey argues, the imposition of this 

independence constraint seems objectionable. For one, it is formally inelegant and ad hoc. And in 

addition, it prima facie constrains the generality of the theory by restricting the theory to those 

decision problems where the world state happens to be independent of the options under 

consideration (Jeffrey 1974, 1982).

If we instead adopt the counterfactual treatment of outcomes, Jeffrey’s problem no longer arises. 

From this perspective, the trouble with Adam’s reasoning is this. In considering whether to go 

to the party, it is irrelevant what the world will be like, given how Adam actually acts. What 

matters is what the world would be like if he were to party and what it would be like if he were to 

study. It is this counterfactual outcome, the one that would have occurred, that the table entries 

s( · )  and p( · ) are supposed to represent. Once that is cleared up, it becomes clear that there are 

in fact three possibilities that need to be distinguished:
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  ec ¬ec eu ¬eu 

  s 1 1 3 1

  p 2 2 2 0

TABLE 6: STUDY OR PARTY?  (CORRECT REPRESENTATION)

Assuming Eve’s love is conditional (c in the table), it is true that if Adam were to study he would 

pass the exam but lose Eve (utility 1), and also that if Adam were to party he would fail his exam 

but have Eve (utility 2). Only if Eve’s love is unconditional (u in the table) do we get the payoff 

structure of table 5. So provided Adam assigns a reasonably high credence to c, he should judge 

that partying is the only rational course of action.

Thus Jeffrey’s problem dissolves given the counterfactual treatment of outcomes, and we avoid 

the need to posit any ad hoc additional constraints. The consequent gains in simplicity  and 

elegance makes the counterfactual treatment a better choice for present purposes. In fact, I think 

one can make the case that, for the same reason, the counterfactual understanding of outcomes 

makes for a more satisfactory interpretation of Savage in general.

1.7  Actions and Choices 

In order for the inquisitive theory of belief and action to work as intended, we need to accept 

certain simple, and arguably simplified, representations of the decision situations agents find 

themselves in. In this section, I want to bring out and address some conceptual difficulties that 

arise for the theory as a consequence. These difficulties touch on tricky issues about the nature 
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of choice and action that are beyond the scope of this dissertation. My primary concern here is 

to clarify what the issues are, but I will also outline some possible lines of response.

1.7.1  What are Actions? 

In §1.4 above, I said that the outcome of Tom’s answer to the sphinx counterfactually depended 

on the question Which English words end on -MT. But is that really quite accurate? It could be 

argued that other factors play a role in determining the outcomes as well. What if this happens 

to be a sphinx who does the opposite of what she says, rewarding Tom for the wrong answer, 

and punishing him for the correct answer? Or what if Tom misheard the question, and the 

sphinx was asking for a word ending on -NT? What if this is all a dream, and none of his actions 

have any real-world consequences at all? What if the sphinx is a spy working for an alien 

civilisation that plans to exploit trivia about English spelling in an elaborate plan to destroy the 

human race? And so on: the possibilities are literally endless. To make the concern vivid, note 

that if Tom believed that any of these scenarios really obtained, you would expect that to inform 

his decision.

The issue raises a problem for the inquisitive view of belief and action. For if we grant that all 

these other possibilities play a role, the outcome of Tom’s choice suddenly depends on a far 

more complicated question: Which English words end on -MT and will the sphinx be true to her word 

and what did she ask and is she an alien and is this all a dream and … So given (1.8), it would  in fact 

be this very complicated, highly specific question that Tom is facing in making this choice. More 

generally, if we take account of every possibility, then basically any concrete choice turns out to 

confront the agent with a highly complex question, which is moreover completely specific to the 
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very particular situation they find themselves in.

This is problematic for two reasons. Firstly, it is implausible that agents should have antecedent 

beliefs about those highly complex and specific questions. This is especially true given that, as I 

argue in §2.7 below, our cognitive limitations prevent us from having views about very large 

questions (i.e. questions that make very fine-grained partitions). And if we do not have beliefs 

about any of the questions we actually face, then it looks as if the inquisitive view of belief and 

action articulated above cannot ground ordinary belief-based explanations of behaviour after 

all. The impact of this problem is softened by the fact that, even when we do not have the 

answer to a question prior to facing it, we can sometimes employ deductive reasoning and 

deliberation to work our way to an answer based on their existing beliefs (see §2.8 and §3.4 

below). But while the possibility of deduction makes a contribution towards resolving this 

issue, it does not make for a complete solution. If we really take account of all the possibilities, 

the questions faced get so complex that it is not plausible that we can bootstrap our way to 

having views about them, even with the help of our deductive faculties.

The second problem is that, if we face a different question for almost every choice we make, this 

radically undermines the force of the Inquisitive Coherence principle articulated in §1.2. The 

idea that we act on a given belief when we are faced with the same question will not have any 

unifying force unless we can expect to face the same question on more than one occasion. 

Again, the problem is less bad than it first appears: as explained in Ch. 2, beliefs on related 

matters turn out to be constitutively connected to one another. So inquisitive theory also unifies 
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our actions in response to suitably related questions to some extent. But again, this may not be 

enough to address the full force of the objection. To address the problem at the root, I think we 

must resist the notion that the only “true” representation of Tom’s decision situation is some 

hypercomplex decision table. Instead, I want to justify the representation by the relatively 

simple decision table ∆Sphinx given above.

One way to do this is to grant that ∆Sphinx is a simplified, idealised representation of Tom’s 

choice, which fails to take account of all the possibilities. Granted that ∆Sphinx is not a fully 

accurate representation of all the messy realities of the situation, one could insist that modelling 

the situation in these simplified terms is nonetheless justified. How can it be that oversimplified, 

inaccurate models of a situation can still yield accurate predictions and substantive explanations 

of real-world events? This is an interesting and complex question, but perhaps it is best left to 

philosophers of science. Sometimes idealisation and oversimplification are simply the price we 

pay for achieving at least a partial understanding of what is going on. For decision theorists, as 

for scientists in other fields, a measure of idealisation is just a fact of life.

A second line of response, which I am inclined to favour, is to get more specific about the nature 

of the actions Tom is choosing between, and which are represented by the options. Take the 

action of saying “unkempt”. There are different ways of thinking about what, exactly, it takes for 

this action to be performed. To see what I mean, here are some possibilities:

A) Willing myself to produce the sound /ʌn’kεmt/ 

B) Firing the neuron that would, under normal circumstances, lead to my vocal chords to produce the 

sound /ʌn’kεmt/
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C) Producing the sound /ʌn’kεmt/

D) Articulating the English word /ʌn’kεmt/

E) Replying to the sphinx by saying the English word /ʌn’kεmt/

F) Replying to the sphinx, who just challenged me to give her a word ending on -MT, and who will 

richly reward me if I answer correctly,  by saying the English word /ʌn’kεmt/

These descriptions of Tom’s action are ordered from thin to thick. Now the solution I want to 

suggest is to posit that the choice represented by ∆Sphinx is in fact a choice between the action (F) 

and other, similarly described actions. Since the performance of any one of these actions entails 

the basic details of the setup, we thus avoid the worry that the outcome of the action should 

depend on extraneous factors. (Even at worlds w where the sphinx is lying, or at which Tom is 

dreaming up the whole encounter, the counterfactual “if Tom were to perform the action (F), he 

would be rewarded” is still true at w if and only if at w the word /ʌn’kεmt/ ends on -MT.)

Traditionally, decision theorists have held that the actions in decision theory are more like (A), 

(B) or (C), often referred to as basic actions (see e.g. Joyce 1999, §2.3, Danto 1965). The idea here is 

that the acts the agent is choosing between should always be events over which the agent has 

absolutely perfect control, and such that, if they were to choose one, they would be certain that 

that action will be realised. However, I agree with David Storrs-Fox (2019), who has argued 

persuasively that the notion of a basic action is a remnant of an antiquated Cartesian picture of 

agency, and that we have good reason to think basic actions thus conceived do not really exist 

(see also Lavin 2013). And if the Cartesian, internalist ideal of a basic action is unachievable 

anyway, we might as well go for a thick conception of action: in for a penny, in for a pound. 
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That being said, there is a reason most decision theorists prefer to think of options as basic 

actions. For if the options in a decision problem represent non-basic actions, then it may be 

possible for an agent to choose an option without knowing that that is the action they have 

chosen; and that seems to lead to unacceptable consequences. To bring this out, consider a 

variant of Tom’s story. Suppose Tom finds himself in the situation described in TRIVIAL TROUBLE, 

except that he misheard the sphinx and incorrectly believes she asked him for a word ending on 

-NT. Consequently he replies “elephant”. Tom has in fact replied “elephant” to the sphinx’s 

question What English words end on -MT. But he does not know this: he thinks he replied 

“elephant” to the question What English words end on -NT.

Moreover, to account for Tom’s reply, the misunderstanding obviously matters. We need to 

invoke his incorrect belief about what the sphinx says. And that means we have to reject the 

representation ∆Sphinx in this case. In this situation, we need the extra columns associated with 

the question What did the sphinx ask to account for the way Tom’s beliefs guided his decision-

making. Furthermore, the salient difference in this variant of the story is just that Tom did not 

know that the sphinx asked for a word ending on ‑MT. So in order to avoid bad predictions, it 

looks like we will need to add a requirement to the effect that, in order for an agent to count as 

making a choice between a set of actions, the agent must know that they are making that choice. 

This would mean that the decision situation the agent is in depends in part on the agent’s 

epistemic state. And that seems circular: in spelling out the action-guiding role of a belief, we 

end up having to appeal to some of the agent’s other beliefs and knowledge.

Is this a vicious or a virtuous circularity? I confess I am not quite sure: I suspect it depends on 
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what you want to get out of decision theory. Insofar as this is a problem, it affects decision 

theory generally, not just the inquisitive variant. Still, if an agent’s knowledge of their situation 

partly determines the decision situation they find themselves in, this does warrant a further 

qualification of the claim from §1.4 that the world confronts the agent with questions. For now it 

seems that agents are, after all, not just the passive recipients of questions from the outside: their 

understanding of the situation does affect the question they count as facing.

1.7.2  What are Choices? 

The problem just discussed was essentially an issue about reining in the width of a decision 

table, finding a way to deal with all the exotic possibilities one finds there. There is a somewhat 

similar issue to do with reining in the height of the decision table, and all the strange actions an 

agent could in principle perform. Consider again Tom’s run-in with the sphinx. We represented 

this as a choice between possible replies to the sphinx. But it seems that Tom could have 

performed some other actions too; for instance, he could have decided to burst out in song, to 

wiggle his toes, or to fight the sphinx. One could argue, then, that all of these other possible 

actions should also be represented by options in the decision table.

Again, the trouble with admitting such options is that doing so will complicate the question 

Tom is facing. Now it looks like the question he was facing is not just Which English words end on 

-MT but rather something like Which English words end on -MT and what songs does the sphinx like 

and how strong is this sphinx and… And again, this problem is quite general: almost any decision 

situation can be made to seem arbitrarily complex by considering a larger number of possible 

actions. As before, it is implausible that anyone would have antecedent opinions about those 

47



complex questions, or even that they could form them by deduction.

Again, I think one can give two sorts of responses here, mirroring the responses floated in the 

last subsection. The first response is the unapologetic idealiser. This response grants that in 

editing down the number of options, we create an intentionally simplified representation of the 

situation: perhaps that is just the cost of doing business with inquisitive decision theory. 

A second response seeks to exploit the wiggle room afforded by the notion of a choice. Maybe we 

should not be maximally permissive about which actions count as alternatives in a given choice: 

just because it was possible for the agent to perform an action does not mean that that action 

was an alternative in the choice they actually made. Perhaps only the actions an agent considers 

count as alternatives, say. Or there may be some other criterion for singling out a subset of the 

agent’s possible actions as the actions the agent is choosing between. However this is spelt out 

exactly, such a thick conception of choices could give us a way of avoiding the problem about 

the abundance of actions. For it allows us to say that Tom really did make a choice in which all 

the alternatives were possible replies to the sphinx. The decision problem ∆Sphinx, then, is a 

formal representation of that choice. 
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Chapter 2.
The Web of Questions

This chapter is about the way an agent’s individual beliefs come together in belief states. In the 

classical picture, this is where the problematic rationality assumptions of the theory really 

become apparent. The classical view of belief states is an extreme form of holism: all of an 

agent’s beliefs combine into a single, global view of the world. Ramsey called it “the map by 

which we steer” (Ramsey 1926, p. 238; Armstrong 1973; Yalcin 2018). And to fit together into this 

monolithic world view, our beliefs must all cohere perfectly. On the most natural development 

of the inquisitive view, an agent’s beliefs are not as tightly knit as that. But they are not 

completely separate either: beliefs are still constitutively linked to each other through their 

thematic connections. They do not form a map, it turns out, but something much more akin to a 

web (albeit a different kind of web than the web of belief Quine had in mind).

If its view of individual beliefs is the most popular aspect of the classical picture, the classical 

view of belief states is probably the least popular. Even the most ardent supporters of classical 

decision theory tend to confess that a measure of idealisation is involved in the assumption that 
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ordinary human beings never have inconsistent beliefs, say. So all sides can agree that there is 

room for improvement here, if the goal is to describe the behaviour of ordinary agents.6 At the 

same time, the somewhat obvious faults of the classical view should not blind us to its 

strengths. Again, the inquisitive alternative aims to strike a balance, ejecting the bathwater 

while preserving the baby.

For instance, our beliefs are not fully closed under entailment on the inquisitive view, but we do 

automatically believe some of the consequences of our beliefs. For instance, you cannot believe 

that “dreamt” ends in -MT without also believing that “dreamt” ends in a T. Here the account 

touches on work by Stephen Yablo (2014) and Kit Fine (2017), who developed the idea of a 

propositional part. Propositional (or quizpositional) parthood is a specific kind of entailment. 

And while we do not necessarily believe every consequence of our beliefs, I claim we do believe 

every part of what we believe (ch. 7 of Yablo 2014 makes the analogous claim about knowledge). 

Likewise, the other rationality assumptions of the classical picture are replaced by less 

demanding, more realistic inquisitive analogues.10

In §2.1-2 below I will assess the classical view of belief states; §2.3-6 develop and motivate the 

inquisitive alternative. Both views of belief states are strongly rooted in the corresponding 

 Robert Aumann (1987) once expressed the view that decision theory does not apply to agents in the 10

actual world at all, but is solely concerned with a fictional, ideally rational species called the homo 
rationalis. Even on a less extreme outlook, some may feel that the issues raised here stretch the domain of 
application of the classical theory beyond its intended narrow bounds. Maybe so, but then I think 
decision theory should broaden its horizons: I agree with those who find those old bounds too 
constrictive, and are hopeful that behaviour that falls short of the classical ideal is still susceptible to 
systematic theorising (Kahneman and Tversky 1979; Thaler 2015).
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views of individual beliefs. In §2.2, §2.5 and §2.11 I establish this connection. These joint results 

provide confirmation for the diagnosis, at the start of Chapter 1, that to fix the fundamental 

problems of the classical picture, we need to revisit its view of individual beliefs. In §2.6-10, I 

examine how, given this view, we should think about transitions from one belief state to the 

next, and examine one way to understand deductive inference within the inquisitive theory.

2.1  Classical Belief States and the Problem of Deduction 

Recall that in formal statements of the classical theory, we take the objects of belief to be 

intensional propositions or sets of possible worlds. As is standard in decision-theoretical contexts, 

we will avoid complications arising from infinities by assuming that the background space 𝒲 of 

possible worlds is finite. Then the classical, “map-by-which-we-steer” view of belief states can 

be stated as follows:

A classical information state is a set of intensional propositions I  such that:

i) Closure under entailment: If p entails q and p ∈ I, then q ∈ I.

ii) Closure under conjunction: If p, q ∈  I, then p ∩ q ∈ I.

An information state I is accurate at a possible world w if and only if all 

propositions p ∈  I are true at w; I is consistent if and only if it is accurate at some 

world. (2.1)

Belief States (Classical). An agent α’s beliefs form a consistent classical information 

state Bα, manifesting themselves in a general disposition to forego ⋂Bα-dominated 

actions. (2.2)
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Defining a classical information state as a set of propositions facilitates the comparison of 

information states with sets of propositions that need not be closed under entailment or 

conjunction. But one can, without loss, represent the classical information state I by a single 

proposition ⋂I: I contains p just in case ⋂I entails p, I is accurate at w just in case w ∈ ⋂I, and I 

is consistent just in case ⋂I ≠ Ø. 

So a classical agent with belief state B always has a strongest belief, ⋂B; and all their other 

beliefs are just consequences of this overall view of what the world is like. The possible worlds 

compatible with ⋂B are called the agent’s belief worlds. The classical views (2.1-2) can be 

helpfully summed up in terms of this notion: agents believe whatever is true at all their belief 

worlds, and do whatever is best at all their belief worlds. The closure conditions (i) and (ii) 

immediately fall out of this slogan: if p is true at every one of your belief worlds, then so is 

everything that p entails. And if both p and q are true at all your belief worlds, then so is their 

conjunction p ∩ q.

To understand the way that, according to (2.2), the contents of a doxastic state are supposed to 

cohere, the analogy of a map is very helpful (see also Camp 2007, Yalcin 2018). Suppose I stick a 

pin into a map of New York to represent the location of Terry’s taco truck. When I move the pin 

from Central Park to Prospect Park, the map now says that Terry is in Prospect Park and no 

longer says that Terry is in Central Park. But that is not the only change. Unlike before, the map 

now says that Terry is in Brooklyn, that Terry is South of Williamsburg, that Terry is close to the 

Brooklyn Public Library, and so on. In short, the map’s contents instantly adjust to preserve 

overall coherence in every respect.
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According to the classical picture, our beliefs should preserve their coherence in the same way. 

And while that may not be entirely right, there is something right about it. Suppose I think it is 

half past eleven. I inspect my watch and find it is a quarter past one already! Besides learning 

the time, I instantly lose a number of beliefs. I no longer believe that it is half past eleven, or that 

it’s morning or that it is not yet one o’clock. I also acquire several other beliefs I did not have 

before: I now believe that it is not half past eleven, that it is afternoon, and that it’s a quarter past the 

hour. It is not plausible that these are six distinct cognitive achievements, each requiring a 

separate act of deductive reasoning. For one, the change is apparently instantaneous. It is far 

more plausible that a single adjustment to my doxastic state is responsible for all these 

differences in the propositional content of my beliefs, just like moving the pin on the map 

produced a range of changes in the propositional contents of the map. The classical picture and 

the attendant map metaphor help us understand how that works.

More importantly for present purposes, presumptions of coherence play an important role in 

ordinary belief-based explanations of behaviour (see Cherniak 1986, ch. 1). Ordinarily, you 

would take it that my belief that it is 1.15pm is a good explanation for my affirming, when 

asked, that “it is afternoon”. That explanation presupposes there is some connection between 

believing that it is 1.15pm and believing it is afternoon. In §1.1, we talked about the power of 

beliefs to provide a unifying explanation for our choices across domains. We discussed, for 

instance, how Bianca’s belief that a blizzard is coming can explain what she wears, how she gets 

to work, what she says, and an unlimited range of other facts about her behaviour. But unless 

Bianca’s acquisition of the blizzard belief stopped her from continuing to believe that it will be a 

sunny all day, it does not really explain most of those choices after all. The natural cohesion of 
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our beliefs is a familiar fact that plays an important role in our ordinary reasoning about belief 

and behaviour, and the classical view of belief states does justice to this fact.

But of course, the classical view goes too far. As Frege once said, some entailments are like 

beams in a house, while others are like plants in their seeds (Frege 1884, §88). It is plausible that 

we believe the beam-in-house entailments automatically, without the need for deduction: for 

instance, believing Austin has a yellow car does seem to involve believing Austin has a car. But 

plant-in-seed entailments require effort to see. If they did not, inspecting a scrambled Rubik’s 

cube would be sufficient for knowing how to solve it. Say you have memorised the pattern on 

all six faces of the cube. Then in all your belief worlds the cube is scrambled some particular 

way. Given what you know about the mechanics of the cube, that information entails that a 

certain sequence of moves S will unscramble the cube: in all your belief worlds, S unscrambles 

the cube. So according to (2.2), you should automatically have the ability to act on that belief by 

solving the cube. Likewise, logic riddles, Chinese rings, and Sudokus should all be solvable in 

an instant. But we all know from experience how difficult such of problems can be. 

If we really knew all the consequences of our beliefs, there would be no calculation or deductive 

reasoning of any kind: why expend energy computing entailments that you already know? We 

would only acquire new beliefs when we got new information, and all the ramifications would 

be instantly known. Calculators would not sell, computer modelling would be unnecessary, 

mathematicians would be out of work. Seth Yalcin sums it up nicely: “The map picture, as 

developed in possible worlds style, suffers an unfortunate irony: taking the belief-desire states 

of agents to be constitutively rational, it makes little room for the intelligibility of deductive 
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reasoning as a rational activity. It is hard, on this picture, to see even what deductive reasoning 

would be.” (Yalcin 2018, p. 5)

Faced with these shortcomings of the classical picture, how are we to respond? It is tempting 

simply to discard the classical coherence requirements altogether. But much as with the classical 

coherence principle discussed in §1.2, radically weakening the theory also undermines its 

explanatory power. We should seek replacements for these constraints that preserve what was 

right about them. What might such those replacements look like? You cannot just say “beliefs 

are closed under obvious entailments” and be comforted. For it is a familiar fact that highly 

non-obvious consequences can be reached through long derivations consisting of easy steps. So 

before you know it, closure under obvious entailment collapses back into closure under 

entailment. This is a formidable challenge: for a sense of the difficulties involved, see Hacking 

1967, Dummett 1975, Vogel 1990, Stalnaker 1991, 1999a, Gaifman 2004 and Parikh 2009. As we 

will see, one of the strengths of the inquisitive account is that it meets this challenge in a very 

simple and principled way.

There is another reason why getting rid of the classical rationality assumptions is easier said 

than done. It might appear like the rationality constraints of (2.2) are just arbitrary posits that 

have been bolted onto the classical view of individual beliefs. But that is not accurate. In fact, 

the classical view of belief states is so closely entwined with the classical view of individual 

beliefs that any criticism of the former must draw scrutiny to the latter. In the next section, I 

bring out this connection.
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2.2  Derivation of the Classical View 

Unlike the classical view of individual beliefs, the classical view of belief states has little prima 

facie plausibility. Its strong, explicit rationality constraints fly in the face of common sense. But 

those constraints are not externally imposed. They are strongly rooted in the classical view of 

individual beliefs (1.1), as formalised in (1.10): 

Individual Beliefs (Classical Formalisation). Belief is a relation between agents and 

intensional propositions. An agent believing the proposition p is always disposed to 

avoid p‑dominated options whenever there are any. (1.10)

As I will show in this section, (1.10) entails that an agent’s beliefs must be consistent, and also 

that agents behave as if their beliefs are closed under both entailment and conjunction. So on 

one natural articulation at least, (2.2) merely makes explicit some rationality constraints that 

were already implicit in (1.1). This derivation helps set the stage for the inquisitive view of 

belief states, which naturally grows out of (1.2) and (1.12) in a precisely analogous way.

Let’s start with closure under single-premise entailment, condition (2.1.i). Suppose Eli has some 

belief p, say that it always snows heavily in January. And let q be an arbitrary consequence of p, 

say that it will snow heavily this January. The disposition (1.10) associates with believing q is that 

Eli should be disposed to avoid q‑dominated options whenever they arise. Now suppose some 

option b is q‑dominated by an alternative a, so that a(w) > b(w) for all q-worlds w. Then clearly 

a(w) > b(w) for all p‑worlds w: since p entails q any p-world is also a q-world. And thus, given 
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(1.10), Eli will forego the action b on the basis of her belief that p. More generally, she will have 

every disposition associated with believing q. For instance, suppose Eli is choosing between 

buying a snow shovel or a set of deck chairs. If snow this January is by itself enough to establish 

the snow shovel is the superior purchase, then snow every January is more than enough. And so 

given (1.10), she will pick the shovel over the deck chairs just on the basis of the stronger belief. 

More generally, (1.10) predicts that Eli behaves in every respect as if she believes that there will be 

snow this January: she will assert it when questioned, prepare for the snow, etcetera. At that point 

we might as well say she does believe it. Generalising one step further, (1.10) entails that Eli 

behaves as if she believes anything entailed by one of her beliefs. In this way, (1.10) naturally 

leads into closure under entailment.

The derivation of condition (2.1.ii), closure under conjunction, is a bit more involved, and 

requires us to understand (1.10) as covering composite as well as simple choices (see §4.3 below 

for details). But the basic thought is the same: given (1.10), believing p and believing q entails 

that you act as if you believed their conjunction. From the point of view of describing your 

behaviour, then, we might as well say that you do believe the conjunction. It is not at all obvious 

that believing p and believing q should entail a disposition to avoid pq‑dominated options: after 

all, an option can be pq‑dominated without being either p‑dominated or q‑dominated. But the 

entailment does in fact hold. For we can show that any agent who is not disposed to avoid 

pq‑dominated options can find themselves in a situation where they will choose either a 

p‑dominated or a q‑dominated option no matter what they do. So in order to be able to avoid 

both p‑dominated and q‑dominated options in general, you have to avoid pq‑dominated 

options as well.11
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Finally, there is (2.2)’s requirement that the agent’s beliefs be consistent. Well, suppose an agent 

has inconsistent beliefs p1, p2, …, pn. As we saw, (1.10) entails that this agent behaves as if they 

believed their conjunction p1 ∩ p2 ∩ … ∩ pn, which in this case is a contradiction. Thus, given 

(1.10), any agent with inconsistent beliefs would be disposed to avoid ⊥‑dominated options. But 

what does that even mean? Suppose our inconsistent agent arrives at a fork in the road and can 

go either left or right. Since ⊥ entails that going left dominates going right, (1.10) predicts they 

should go left and not right. But ⊥  also entails that going right dominates going left, so (1.10) 

also predicts the agent goes right and not left. But of course the agent cannot do both. Thus 

(1.10) entails no agent can have inconsistent beliefs, since any such agent would have to have 

impossible dispositions.11

Jointly, these three arguments show that (1.10) entails that any believer behaves as if their beliefs 

 Suppose an agent is not disposed to avoid pq‑dominated options. That is, suppose they will at least 11

sometimes choose an option b, even though there is an alternative a such that b(w) < a(w) for all w ∈ pq. 
And suppose that immediately after having chosen b over a, this agent is offered a bet; if they refuse, they 
are guaranteed to get 0 utility (call that option o). But if they take the bet, their payoffs are as follows:

 ½ · (a(w) – b(w)) for all w ∈ pq 

t(w) =   {  1 for all w ∈ p¬q 

    –1 – |a(w) – b(w)| for all w ∈ ¬p

If our agent avoids p‑dominated options, they will take the bet, because t strictly p-dominates o. But note 
that the composite choice of b and t is strictly q‑dominated by the composite choice of a and o:

b(w) + t(w) =      { ½ · (a(w) + b(w)) < a(w) for all w ∈ pq 

   min{ a(w), b(w) } – 1 < a(w) for all w ∈ ¬pq 

So if they take the bet, the agent has failed to avoid a q-dominated option. But leaving the bet is a 
p‑dominated option. Either way, having chosen b over a the agent cannot avoid both p‑dominated and 
q‑dominated options.
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formed a consistent, classical information state. That still leaves a little bit of light between the 

classical view of individual beliefs (1.10) and the classical view of belief states (2.2), which says 

that an agent’s beliefs actually do form such a state. One way to bridge this gap would be with 

something like the following principle:

Quacks Like a Duck Principle. If an agent α has the behavioural dispositions that 

are associated with a belief with a certain content, and moreover α has those 

dispositions in virtue of their beliefs, then α actually does have a belief with that 

content. (2.3)

That is, if they look like they believe p, swim like they believe p and quack like they believe p, 

and moreover do all those things in virtue of what they believe, then the agent probably 

believes p.

By rejecting (2.3)’s moderate behaviourism, you create a little bit of space between (1.10) and 

(2.2). However, while there may be reasons for rejecting (2.3), doing so will not be of any help in 

addressing the problems that concern us in this dissertation. The sorts of behavioural patterns 

we want to account for here show that the agents in question do not in fact have classical belief 

states, which conflicts with (2.2). But they also show, even more directly, that contrary to (1.10), 

agents do not act as if they had classical belief states either. No acceptable classical belief state 

accounts for their choices in accordance with (2.2). Ordinary human beings, I contend, do not 

look classical, swim classical or quack classical. The problem is to provide some other belief-

based explanation of their choices. The derivation from this section establishes that any such 

explanation must reject (1.10), which entails that agents do behave classically.
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2.3  Quizpositional Mereology 

Just like intensional propositions, quizpositions stand in entailment relations: AQ entails BR just 

in case BR is true at every possible world where AQ is true (that is, just in case AQ necessitates BR 

or just in case ⋃A ⊆  ⋃B). But in addition, quizpositions also stand in a stronger consequence 

relation known as parthood –– this is a notion developed by Yablo (2014) and Fine (2017). 

Quizpositional parthood is essentially a particularly blatant or obvious sort of entailment. To 

invoke Frege’s metaphor once more, there are beam-in-a-house and plant-in-a-seed entailments. 

The parts of a quizposition are its beam-in-a-house entailments. The paradigm example of a 

part is a conjunct, and the paradigm example of a non-part is a disjunction. For instance, It’s 

Friday and I’m very tired are both part of It’s Friday and I’m very tired. But Either it’s Friday or I’m 

very tired is not part of It’s Friday. To introduce the concept of quizposition parthood, I will begin 

by saying something about question conjunction and question parthood.

In natural language, interrogatives can be conjoined just as declarative sentences can. Consider 

for instance the conjunctive question How many daughters did Russ have and how many sons? A 

complete answer to that question requires a complete answer to each conjunct. That is, any 

complete answer is the conjunction of some complete answer to D, How many daughters did Russ 

have?, and a complete answer to S, How many sons did Russ have? Thus the cells of the 

conjunction of D and S, written DS, are the intersections of D-cells with S-cells. In general,

The conjunction of two questions Q and R, written QR, is the question

QR := {  (q ∩ r) : q ∈ Q and r ∈ R  }\{Ø}
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Equivalently, QR is the partition such that w ~QR v if and only if w ~Q v  and w ~R v.

(2.4)

It is worth noting that not every incomplete DS-answer can be expressed as a conjunction of a 

D‑answer and an S-answer: for instance the DS-answer Russ has more daughters than sons.

To obtain a notion of parthood for questions, we abstract away from the relation that question 

conjuncts bear to their conjunctions. Note that D is a coarsening of DS: each D-cell is a union of 

smaller DS-cells. Likewise, S is a coarsening of DS. This suggests the following definition of a 

question part:

One question Q contains (or is at least as big as) another question R if and only if 

every R-cell is a union of Q-cells. We say R is part of Q if and only if Q contains R. 

Equivalently, R is part of Q just in case w ~R v whenever w ~Q v. (2.5)12

Note that Q contains R if and only if QR = Q. More intuitively, one question is part of another if 

it needs to be resolved to get a complete answer to the bigger question. For example, What 

month is it? is part of What is the date? and What street does she live on? is part of What is her 

address?

Figure 1 below illustrates the definitions visually. Each square represents a different partition of 

logical space: a different question. The questions in the higher tiers partition the space of 

possibilities more finely; they make more distinctions between possible worlds. Thus they 

 Somewhat confusingly for our purposes, linguists refer to this relation between questions as entailment.12
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contain the smaller questions displayed below them. The top question is the conjunction of all 

the questions below it, since it makes every distinction those questions make and nothing 

besides. Likewise, each question in the middle tier is the conjunction of the two polar questions 

immediately below it on the bottom tier. The conjunction of some questions is always the 

smallest question that makes all the distinctions of its conjuncts. 

FIGURE 1: QUESTION PARTS AND QUESTION CONJUNCTION

Any conjunction of parts of Q is itself a part of Q. It follows that the common parts of any two 

given questions must be closed under conjunction, so that there must always be a greatest 

common part:

The overlap of two questions Q and R is the biggest question that is part of Q and 

also of R. Two questions overlap if and only if their overlap is not equal to {⊤}. (2.6)

For instance, the question What are the capitals of Europe? overlaps What are the capitals of Asia?,  

and their overlap is the question What are the capitals of Turkey and Russia? (assuming for the sake 
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of the example that it is not contingent what the countries of Asia and Europe are). Any answer 

to the latter question is a partial answer to both of the bigger questions. The more (partial) 

answers two questions have in common, the more they overlap, and two questions do not 

overlap at all just in case they do not have any contingent partial answers in common.

Our definition of question conjunction naturally suggests a definition for quizposition 

conjunction:

The conjunction of a Q-answer A and an R-answer B, written AB, is the QR-answer 

{ (a ∩ b)  : a ∈  A and b ∈  B }\{Ø}. The conjunction of the quizpositions AQ and BR, 

written ABQR or AQ ⋀ BR, is the quizposition 〈QR, AB〉. (2.7)

A quizpositional conjunction makes just enough distinctions between possible worlds to make 

every distinctions made by its conjuncts, and rules out just enough possibilities to rule out every 

possibility ruled out by its conjuncts. The notion of quizposition parthood is, again, a 

generalisation of the relationship quizpositional conjuncts bear to their conjunction. One 

quizposition is part of another if it makes fewer distinctions and rules out fewer possibilities:

A quizposition AQ contains a quizposition BR if and only if Q contains R and 

AQ entails BR  (that is, ⋃A ⊆ ⋃B); alternatively, we can say BR is part of AQ. (2.8)

As in the case of questions, one quizposition contains another just in case the conjunction is 

equal to the whole. That is to say, AQ  contains BR if and only if ABQR = AQ.

For example, consider the quizposition FT, It is the 15th of January, a complete answer to the 
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question T, What is today’s date? In order to answer T, you have to answer its component 

questions M, What month is it and D, What day of the month is it. And if your answer to T is to be 

F, you have to answer those component questions a particular way. Thus the quizpositions JM, It 

is January and the quizposition XD, It is the 15th day of the month, are both part of FT. Here are a 

few more examples to get the gist of it: Romeo’s number starts in a two is part of Romeo’s number is 

212-529 6300; Arden lives on Broad Street is part of Arden lives on 15 Broad Street; and Leopards 

run very fast is part of Leopards and tigers run very fast. In each case, the part is an answer to a 

small question that is incorporated in the whole, which answers a bigger question. 

In the example above, JM is in fact a somewhat special part of FT, in that JM is the strongest 

answer to M that FT entails. More partial answers to M, such as It is either January or March or It 

is not yet August, also count as parts of  FT. But they are not maximal M-parts:

Let AQ be any quizpositions, and R any part of Q. Then the maximal R-part of AQ, 

written A/R, is the strongest part of AQ about R. (2.9)

For instance, JM = F/M and XD = F/D.

In figure 2 below, each square represents a quizposition. The inquisitive component is 

represented as a partition as before, and the informational component is represented as a 

colouring: cells where the quizposition is true are coloured light green and those where it is 

false a dark red. The quizpositions in higher tiers contain those displayed directly below them: 

their inquisitive components are more fine-grained, and they are true in fewer worlds. In fact, 

each part displayed in figure 2 is the maximal part about its question: that is to say, if we name 
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the top quizposition AQ, the others are all of the form A/R for different parts R of Q. The 

quizposition at the top is the conjunction of the quizpositions below it. Likewise the 

quizposition on its lower left is the conjunction of the two quizpositions immediately below 

that. But the quizposition on the right in the middle tier is strictly stronger than the conjunction 

of the quizpositions below it: a conjunction of two necessary truths would itself be a necessary 

truth.

FIGURE 2: QUIZPOSITIONAL PARTS

I should note explicitly that quizposition and question parthood are both transitive relations: 

parts of parts of a whole are themselves also parts of the whole. For if Q makes more 

distinctions than R, which in turn makes more distinctions than S, then Q makes more 

distinctions than S. And if AQ rules out more possibilities than BR, which in turn rules out more 

possibilities than CS, then AQ rules out more possibilities than CS. This is important, because it 

addresses the worry from §2.1 that in closing beliefs under obvious consequence we might end 

up ruling in non-obvious consequence too. Closing under parthood, no such collapse can occur. 
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Take an arbitrary set of quizpositions S and let PS be the set of parts of quizpositions in S. It 

follows from transitivity that PS already contains its own parts. There is no risk of finding any 

hidden, non-obvious parts amongst the parts of the parts of S.

Given the proposal to think of beliefs as answers to questions, closure under parthood is a very 

intuitive constraint. We noted in §2.1 that beliefs are not closed under entailment. Yet someone 

who can tell you the date can always tell you the month, and anyone who can tell you my 

phone number can also tell you its first digit. Clearly this is no coincidence. The quizposition 

mereology just developed tracks the intuitive explanation for those regularities: telling you the 

month is part of telling you the date, and telling you the first digit is part of telling you the 

phone number; that is why in each case the latter ability entails the former. In general, beliefs 

are answers to questions according to the inquisitive picture, and it is part of answering any big 

question to answer its component questions.

Conversely, your views about big questions incorporate your beliefs about their parts. For 

instance, if you firmly believe It is the 20th in answer to the question What day of the month is it, 

then you cannot at the same time be unsure whether It is the 20th or the 21st April in answer to 

the question What date is it. We can capture that idea with a partial conjunctive closure 

constraint: if you answer A to Q, and you answer B to some part R of Q, then B must be part of 

your view of  Q as well, and thus you believe the conjunction ABQ.

Recall that a classical information state is a set of intensional propositions closed under 

entailment and conjunction. An inquisitive information state is a set of quizpositions subject to 
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weaker closure conditions:

An inquisitive information state is a set of is a set of quizpositions I subject to the 

following closure conditions:

i) Closure under parthood: If AQ contains BR and AQ ∈ I, then BR ∈ I.

ii) Partial closure under conjunction: If Q contains R, and AQ, BR ∈ I then ABQ ∈ I.

An inquisitive information state I is consistent if and only if there is a possible 

world at which all quizpositions in I are true. I is coherent just in case it contains no 

quizposition of the form ⊥Q. (2.10)

Partial closure under conjunction guarantees that whenever I contains any quizpositions about 

Q at all, I contains some strongest quizposition VQ about Q. Thus we can define:

The domain of I, denoted 𝒟I, is the set of all questions about which I contains at 

least one quizposition. For any Q ∈ 𝒟I, I’s view on Q, denoted I(Q), is the strongest 

Q-answer V such that VQ ∈ I. (2.11)

As the notation suggests, instead of modelling inquisitive information states as sets of 

quizpositions, it is also possible to think of them as a special kind of function from questions to 

views.  Thus inquisitive information states are a more constrained versions of the inquisitive 13

belief models Yalcin (2011, 2018) proposed –– more on the similarities and differences with 

Yalcin’s view in §3.5 below.

 It is a function I from questions to views about those questions subject to two conditions: (a) I’s domain 13

𝒟I is closed under question parthood, and (b) when Q, R ∈ 𝒟I have a common part S, I(Q)/S = I(R)/S –– 

see (2.14) below.
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2.4  Inquisitive Belief States and the Possibility of Deduction 

We now have everything in place to state the inquisitive view of belief states:

Belief States (Inquisitive). An agent’s beliefs form a coherent inquisitive information 

state Bα, manifesting themselves in a disposition to forego Bα(Q)-dominated options 

when confronted with any question Q ∈ 𝒟Bα. (2.12)

In this section, I will examine some simple choice situations where this view fares better than 

the classical view of belief states (2.2) –– in particular, we will be interested in the way the 

inquisitive picture leaves room for deductive failure and inconsistencies. In §2.5 and §2.11, I will 

discuss the internal motivation for the inquisitive view of belief states (2.12), showing how to 

derive it from the view of individual beliefs (1.12), in much the same way that, in §2.2, we 

derived the classical view of belief states (2.2) was from the view of belief states (1.10).

On the inquisitive view, our beliefs form a coherent inquisitive information state. To begin 

motivating that thesis, consider a case that causes trouble for the classical view, taken from the 

behavioural economics literature (Kahneman and Frederick 2002): 14

MITTEN STATE MURDERS I: You ask Mandy, a smart Arizona criminology major, how 

many murders took place in Michigan last year. After some hesitation, she guesses 

 In Kahneman and Frederick’s experiment, a large group students from the University of Arizona was 14

asked to estimate the yearly murder rate in Detroit, and another large group was asked to estimate the 

yearly murder rate in Michigan. The median response for “Detroit” was 200, for “Michigan” it was 100. 

(The actual rates are higher.)
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“around 150”. Then you ask “What about Detroit?”, to which she confidently 

replies: “How silly, I didn’t think of Detroit! Detroit alone had well over two 

hundred murders last year, so Michigan’s number must be even higher.”

First we might try to analyse this example from a classical viewpoint. At the beginning of this 

story, what is the world like according to Mandy? To explain her confident reply to the follow-

up question, it seems we need to say that Mandy knew all along that there are over two 

hundred murders a year in Detroit, and also that she knew Detroit was in Michigan. Clearly she 

did not learn either fact over the course of the conversation: she had this information already. 

But on the classical picture, we are then forced to say Mandy believed from the start that there 

are over two hundred murders a year in Michigan. For if all of Mandy’s belief worlds are 

worlds where Detroit, with its 200+ murders, is in Michigan, then there are also 200+ Michigan 

murders in her belief worlds. But given that, (2.2) would predict, wrongly, that Mandy should 

give an answer to that effect. So no matter what classical belief state we attribute to Mandy, we 

are unable to explain both her replies.

For an inquisitive account of Mandy’s first reply, we do not ask for her world view in general. 

Instead we look for a view about M, the number of murders in Michigan last year:

w ~M v    iff    the number of murders in Michigan last year at w is the same as at v

We can account for Mandy’s tentative reply if we say she has no strong antecedent beliefs about 

M. Maybe she lacks beliefs about M altogether, or maybe she has some weak view about M: she 

may believe, say, that there were fewer than a thousand murders. But evidently, she does not yet 

believe AM, that Michigan had over two hundred murders last year. To account for Mandy’s 

second reply, we need to appeal to her view on a different matter D, the number of murders in 
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Detroit last year:

w ~D v    iff    the number of murders in Detroit last year are the same at w and v

We can explain Mandy’s assertion about Detroit by saying she believes BD, that there were over 

two hundred murders in Detroit last year. If, for simplicity, we ignore the possibility that Detroit is 

in a different state, BD entails AM. But Mary can nevertheless believe BD without believing AM 

because these quizpositions are about disjoint questions: D and M do not draw any of the same 

distinctions between worlds, and so they do not overlap. Thus the inquisitive account has a 

straightforward and intuitively satisfying explanation for Mandy’s behaviour.

At the start of MITTEN STATE MURDERS I, Mandy believes BD but not AM. By the end, Mandy has 

put two and two together. She has made a deductive inference, and as a consequence she now 

believes both BD and AM. That is why, if someone were to ask her about the Michigan murder 

figures again, she will not make the same mistake a second time. We can make sense of this 

cognitive change because, as noted in §1.1, on the inquisitive account, one can acquire a new 

belief without getting any new information. (In §2.6 and §2.8 below, I will provide a more 

detailed account of how to understand Mandy’s deductive step in this example.)

Failures of deductive closure can easily lead to inconsistencies. This can be illustrated with an 

alternative ending to Mandy’s story:

MITTEN STATE MURDERS II: After Mandy guesses that there were around 150 murders 

in Michigan, you reply: “That is right! In fact, with only 120 murders, Michigan has 

one of the lowest murder rates of any state.” Mandy unreflectively takes your word 
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for it, and repeats the statistic to a fellow student later that day.

At the end of this version of the story, Mandy has acquired the belief CM, that Michigan had 120 

murders last year, and is acting on it. If she had made the link with Detroit, she may not have 

accepted CM so easily. It may be that when her fellow student mentions Detroit, Mandy will 

realise you had given her false information, and reject CM. But to account for that, we need to 

say that Mandy retained the belief about Detroit she had in the beginning, BD. And thus Mandy 

now has inconsistent beliefs: there is no possible world at which BD and CM are both true.

FIGURE 3: PAIRWISE INCONSISTENT YET COMPATIBLE BELIEFS

On the classical view, inconsistent belief states are ruled out, but the inquisitive view permits 

them. Figure 3 illustrates the situation visually: (2.12) allows for arbitrary inconsistencies 

between beliefs about non-overlapping questions like M and D; views about overlapping 

questions can be inconsistent too, provided they agree on the overlapping part (more on that in 

§2.11 below).

Note that Mandy’s doxastic state at the end of MITTEN STATE MURDERS II violates all three 

classical coherence requirements: it is inconsistent, and it is neither closed under entailment nor 

under conjunction. But while Mandy’s beliefs are inconsistent, they are not incoherent: Mandy 

does not believe any outright contradictions or necessary falsehoods. This is possible because 

her beliefs are not fully closed under conjunction. Mandy believes Michigan had 120 murders last 
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year. She also believes that Detroit had over 200 murders last year. But at no point does Mandy 

accept their conjunction, Michigan had 120 murders last year even though Detroit had over 200.

2.5  Inquisitive Holism 

Failures of deductive closure motivate a weakening of the classical coherence constraints. But 

why weaken them in this specific way? The aim of this section is to build a better understanding 

of what the inquisitive view says, and why it says what it does. By the end, we should begin to 

see why the imagery of an interconnected web of beliefs is an appropriate description. But I 

want to start by explaining some of the internal reasons for adopting the specific coherence 

constraints of (2.12), given the inquisitive picture developed in Chapter 1. These arguments are 

informal versions of those in §2.11, where I give a derivation of (2.12) from the inquisitive view 

of individual beliefs (1.12), along the same lines as the classical derivation in §2.2.

To begin with, let’s focus on an agent’s beliefs about a particular question Q. All Q-beliefs 

govern the same class of choices: namely all and only those decision situations that Q addresses. 

Because of this your Q‑beliefs have to cohere with other Q-beliefs just as in the classical case, 

even if they might cohere less tightly with your beliefs about other questions. For the same 

reason that a classical agent’s beliefs must cohere into a view about the world, an inquisitive 

agent’s answers to Q will cohere into a view VQ about Q, and their beliefs about Q are all and 

only those quizpositions AQ entailed by this view VQ.
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So instead of a single monolithic world view that incorporates all of their beliefs, an inquisitive 

agent has different views encapsulating their answers to different questions. They will not have 

a view on every question: on some questions they may have no beliefs at all. But whenever an 

agent has answers to Q, there is always a strongest Q-answer V amongst them, and this is the 

agent’s view on Q. Just like in the classical case, the view VQ must be consistent. After all, every 

option is dominant given ⊥Q, but an agent can only choose one option when faced with Q. That 

gives us (2.12)’s requirement that belief states must be coherent.

Things get more interesting when thinking about the inquisitive closure conditions, which 

require us to investigate the relationship is between an agent’s views on different questions. The 

crucial observation here was made in §1.4: if a question R is big enough to address a certain 

decision problem ∆, then it follows from definition (1.8) that any question Q that makes more 

distinctions than R also addresses ∆. In other words:

If the question R is part of the question Q, then Q addresses every decision problem 

that R addresses. (2.13)

From (2.13), we can infer that if Q contains R, all the choices that are guided by the agent’s view 

about R are also guided by their view about Q if they have one. And that fact imposes some 

constraints on the relationship between the agent’s view on Q and their view on R.

For concreteness, let Q be the question What are the two biggest cities in Brazil, in order? And 

suppose our agent, Nico, has a view on Q, namely that Rio and São Paolo are the two biggest 

cities in Brazil, (Nico takes no stance on which of the two is bigger). How does this view 
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constrain his views about a smaller questions? In particular, what does it tell us about Nico’s 

view on  R, what is the biggest city in Brazil? In the diagram below, AQ represents Nico’s view 

about Q. So roughly speaking, the green cells are the possibilities Nico considers live for the 

purpose of practical deliberation. The red cells are the possibilities he rules out. There are two Q-

cells Nico considers live, namely Rio is the biggest and São Paolo the second-biggest and São Paolo is 

the biggest and Rio the second-biggest. The quizpositions BR, CR, DR and ER are possible views on R, 

and we will investigate which of these views could in principle be Nico’s.

FIGURE 4: WHICH VIEWS OF THE PART FIT THE VIEW OF THE WHOLE?

First of all, Nico’s view on R must be consistent with AQ. It cannot be, say, BR, that the biggest city 

in Brazil is Salvador. For suppose you ask Nico whether or not Salvador is the biggest city 

Brazil. Assume Nico wants to answer truthfully, and is choosing between “Yes” and “No”. Both 

Q and R address this choice. Given that he has the view AQ, Nico rules out the possibility that 

Salvador is the biggest, and will therefore answer “No”. But if he believed BR, Nico would rule 

out the possibility that Salvador is not the biggest, and would answer “Yes”. He cannot do both, 

so Nico cannot possibly have both views: they are associated with incompatible dispositions. 

BR CR DR ER

AQ
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More generally, it is not possible for Nico’s views about R to be incompatible with his view 

about Q.

Next up is CR, the biggest city in Brazil is not Salvador. Could that be Nico’s view on R? CR is 

consistent with AQ, but it leaves open more R-cells than AQ does. In particular, CR leaves open 

the possibility that Brasília is the biggest city in Brazil. Whenever Nico is faced with the 

question R, he also faces Q, and so just in virtue of his view AQ Nico will rule the possibility that 

Brasília is the biggest. But if CR were Nico’s view, then he ought to consider this a live possibility 

at least some of the time. He does not, so Nico’s view on R must in fact be stronger than CR. 

More generally, Nico must rule out every R-possibility incompatible with A. Consequently, Nico 

believes every part of AQ about R. 

In fact, this reasoning did not rely on special assumptions about Nico or about R, so we can 

generalise and conclude agents believe every part of their views. That gives us (2.10)’s closure 

under parthood. One can restate this condition as follows: if R is part of Q, then your view of R 

rules out every R-cell that your view on Q rules out. And thus everything that your view on Q 

says about R is also part of your view on R. (2.10)’s partial conjunctive closure condition is 

basically the inverse of this: provided you have beliefs about both Q and R, your view on Q 

must rule out every Q-cell that is inconsistent with your view on R. In other words, your beliefs 

about R are part of your view on the bigger question Q.

To motivate this condition, we need to show that Nico’s view on R cannot rule out more 

possibilities than AQ does. For example, Nico cannot believe DR, that the biggest city in Brazil is 
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São Paolo. The exact reasons for this incompatibility are rather subtle and best left until §2.11. 

For now, let me just give an intuitive example to get at the basic idea. Suppose Nico is 

participating in a quiz show and is asked What is the largest city in Brazil? If he gets the right 

answer, he will win $1000. For $200 he can buy an extra guess. So he can either hedge and give 

two answers, or he can decide not to hedge and give one answer. Both Q and R address his 

choice. Nico’s view AQ leaves open two live possibilities: “Rio” might be the correct answer or it 

might be “São Paolo”. Based on that, you would expect that Nico will play it safe: buy the extra 

guess, answer “Rio or São Paolo”, and walk away with a sure $800. But given DR, going all in 

for “São Paolo” is the strictly dominant option. So if Nico believed DR, he would not hedge, 

while his view AQ led us to expect he would hedge. He cannot do both, indicating there is at 

least a tension involved in combining the view AQ with DR.

We have now motivated all three of (2.10)’s coherence constraints. If we combine the last two, 

the closure conditions, we get that Nico’s view on R rules out neither fewer nor more R-cells than 

his view on Q does. This leaves only one possibility, namely the view that rules out all and only 

those R-cells that AQ rules out. This is A/R, the maximal R-part of AQ (df. 2.9). In this case it is 

the view ER, the biggest city in Brazil is either Rio or São Paolo. So in general, an inquisitive 

agent’s view about a big question fully determines their view about every part of that question 

in this way: if R is part of Q and the agent’s view on Q is VQ, then their view on R must be V/R.

It immediately follows from this conclusion that when an agent has views on overlapping 

questions, those views will agree on the shared part. That is to say: 
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If I is an inquisitive information state, and two questions Q, R ∈ 𝒟I have a common 

part S,  then I(Q)/S = I(R)/S = I(S)S (2.14)

Say you have a view on What the capitals of Europe are and also a view on What the capitals of Asia 

are. Then it follows from (2.12) that those two views must agree on the capitals of Turkey and 

Russia. You cannot have a firm view about the capital of Turkey with respect to the first view, 

and be neutral about it with respect to the latter. So certain changes in view about What the 

capitals of Europe are directly affect your view on What the capitals of Asia are, even though neither 

view is part of the other. More specifically, this will happen whenever the agent changes their 

mind about a question that is in the overlap of those two questions. That means you can think 

of your view on the capital of Turkey as quite literally being a shared part between these two 

views; when you change the shared part, you thereby change both the wholes it belongs to.

(2.14) does not only link views that bear a direct mereological relation to one another. Two views 

can overlap with a third view without overlapping each other. And even when that does not 

happen, they might still be connected to one another through one or more daisy-chains of 

intermediate views, where each link in the chain overlaps with its neighbours. As I discuss in 

the next section, changes in view at one end can sometimes be felt throughout the chain.

An ordinary human being has a vast number of views on all sorts of interrelated matters. So 

their views can be expected to form a highly complex mereological structure. For lack of a better 

metaphor, this is naturally thought of as a large and messy web: hence “the web of questions”. 

In principle, the formal theory is compatible with the existence of a disconnected domains of 
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belief evolving in perfect independence of one another. But it is not really in the spirit of the 

view to think that this is a common occurrence. A typical belief web may contain tightly knit 

hubs of thematically connected beliefs, which are better integrated with one another than they 

are with beliefs outside the hub. But there will also be bridges linking the various islands, so 

that barely any beliefs are cleanly separated from the rest of the web. Thus, while it allows for 

more loosely connected beliefs than the classical picture does, the inquisitive view of belief 

states is still a thoroughly holistic vision.

2.6  Connected Views and Belief Updates 

In §2.1, we observed that certain consequences of our beliefs come for free, so to speak: “beam-

in-a-house” entailments are believed with no deductive reasoning required. The inquisitive 

theory accounts for this phenomenon in part by saying that beliefs are closed under parthood: if 

believing something necessarily involves believing its parts, then no cogitation is required to get 

to the parts. But the immediate consequences of a new belief are not always just its parts. Other 

downstream belief adjustments can be necessitated by the acquisition of a new belief. And a 

consequence that is obvious or immediate to one person need not be obvious to everyone.

The step from Detroit has more than 200 murders to Michigan has more than 200 murders may not 

be immediate to students at the University of Arizona, but it would be pretty obvious to anyone 

who grew up in Detroit. Had they run their experiment at the University of Michigan, 

Kahneman and Frederick would no doubt have found different results. Now that we 
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understand the inquisitive model of belief a bit better, we are in a position to see how it is able 

to account for those cognitive differences. The way a belief is linked to your other views 

depends on its position in the web, and on fine-grained details about the content of your 

background beliefs. In particular, Michigan students’ beliefs about Detroit and Michigan are in 

general more integrated than those of Arizona students.

To see how that works, let us revisit MITTEN STATE MURDERS I. Here Mandy brought her view on 

D, the number of murders in Detroit, to bear on the question M, the number of murders in 

Michigan. Specifically, she inferred from the fact that there were more than 200 murders in Detroit, 

BD, that there were more than 200 murders in Michigan, AM. (The inference really requires an 

additional premise, but to keep it simple, I will ignore the possibility that Detroit is in a different 

state.) There are various different ways such a transition could happen within the inquisitive 

theory, but here is one possibility. Prior to the inference, Mandy had two separate views, one 

about D, and the other about M; she did not have any view about the conjunctive question DM 

(that is to say, DM ∉ 𝒟BMandy). The deductive inference consisted in her merging these two views 

together into a single view about DM. After this merger, her views about D and M have both 

become part of a larger view and must therefore cohere. Consequently, the Detroit number can 

no longer exceed the Michigan number, and in particular the information that the Detroit 

number exceeds 200 is now brought to bear on M, resulting in the belief that the Michigan 

number is greater than 200 as well.

Let me go through this a bit more slowly. Consider the following answers:

B1 = { d ∈ D : according to d, there are over two hundred murders in Detroit }

B2 = { dm ∈ DM : according to dm, there are over two hundred murders in Detroit }
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A1 = { m ∈ M : according to m, there are over two hundred murders in Michigan }

A2 = { dm ∈ DM : according to dm, there are over two hundred murders in Michigan }

B1 and B2 are truth-conditionally equivalent answers to D and DM respectively. They entail A1 

and A2, which are truth-conditionally equivalent answers to M and DM respectively

Prior to the deductive inference, Mandy’s view on D is B1D. For simplicity, let us say that her 

view on M is just the tautological MM. She has no view on DM at all. We can think of the merger 

of the two views as the most conservative way of acquiring a view on DM while preserving her 

belief in B1D. For suppose Mandy believes B1D and also has a view on DM. Then she must at the 

very least believe the tautology DMDM. By partial closure under conjunction it then follows she 

must also believe the conjunction of those two quizpositions, B1D ⋀ DMDM, which is equal to 

B2DM. Finally, A1M is part of B2DM, so by closure under parthood she believes A1M too.

This shows that Mandy can only acquire a view about DM by merging her views on D and M,  

bringing the answers to each question to bear on the other. The information could just as well go 

in the other direction. Suppose you start out with the view ¬A1M, that there are at most 200 

murders in Michigan, and a trivial view DD about the number of murders in Detroit.  Then 15

acquiring a view about the conjunctive question DM while preserving the view ¬A1M requires 

you to adopt the view ¬B1D as well, that there are at most 200 murders in Detroit. If you start out 

with inconsistent beliefs about the two questions, for instance B1D and  ¬A1M, then any merger 

will involve a choice about which of these beliefs to preserve.

One consequence of the merger-style treatment of this deductive inference is that as long as 

 The negation of a quizposition AQ, written ¬AQ, is just the quizposition 〈Q, Q\A〉.  15
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Mandy hangs onto a view about DM, it will remain the case that she automatically brings any 

information about D to bear on M and vice versa. Thanks to the fact that these two views are 

now integrated into a bigger view, they no longer vary independently but are instead 

connected. And that seems plausible in this particular case. If, right after the conversation in 

MITTEN STATE MURDERS I, Mandy learns that there were actually 300 murders in Detroit, she will 

instantly infer that there were more than 300 in Michigan. And if she learns there were 400 

murders in Michigan, she will instantly infer there were at most 400 in Detroit. By contrast, 

prior to this conversation her views were not yet linked; and while she could still have made 

those inferences, it would not have been instant or automatic.

A similar cognitive difference accounts for the fact that if you are from Detroit, you are less 

likely than others to forget about Detroit when it comes to assessing the number of murders in 

Michigan. If you are from Detroit, you probably have a lot of richly detailed beliefs about the 

city and also about Michigan, and these beliefs are likely closely intertwined, and integrated 

through bigger-picture questions like DM. As a consequence, any information about the one is 

liable to be brought to bear on the other instantly, since the relevant views are likely to be 

connected and well-integrated.

If two views are part of a single overarching view they must fully cohere. If two views are 

connected because they overlap with each other, they need only agree on the overlapping part. 

As indicated at the end of the last section, there are still further ways in which two views can be 

connected. As figure 5 illustrates, two views may overlap with a third view without 

overlapping one another (the quizpositions displayed on the lower tier are the shared parts of 

the quizpositions immediately above them).
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FIGURE 5: A DAISY CHAIN OF OVERLAPPING VIEWS

In a situation like this, a change in view on one end of the chain may be felt in every link of the 

chain. For instance, suppose some agent has the views depicted in figure 5. Then a change in 

view on the top left can necessitate a change in view on the top right, even though the two 

questions do not overlap, and even though they are not part of some larger overarching 

question. One such change is depicted in figure 6:

FIGURE 6: A BELIEF UPDATE ON LINKED VIEWS

Here, one additional cell of the top left question is ruled out. Doing so involves ruling out an 

additional cell in middle view too: this cell is in the overlap between the two. Consequently, a 

new cell in the overlap between the middle view and the view on the right is ruled out too. And 
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thus the informational update on the left is automatically accompanied by an informational 

update the right because of the intercession of an appropriate background belief, which serves 

as a bridge between the two views. The inquisitive view makes very specific predictions about 

the circumstances under which views about different matters become linked in this way.

Let me give a concrete example. Suppose someone acquires a piece of information:

l: Lincoln was president in 1862

And suppose they have the following background information already: 

f: Lincoln served as president for four years

a: In 1870, either Lincoln or Grant was president of the United States

Taken together, these three pieces of information f, a and l entail that 

g: In 1870, Grant was president of the United States

According to the classical theory, all our beliefs are perfectly integrated, and the acquisition of 

the information l should cause the agent to believe g as well. 

On the inquisitive theory, an agent may fail to see this consequence. The new information might 

be brought to bear on the situation in 1870 or it might not be. It depends on the questions 

involved. First suppose we take the three beliefs with truth conditions l, f and a to be LQ, FR and 

AS respectively, where

Q: Who was president in 1862? 

R: How long was Lincoln president for?

S: Who was president in 1870?

It is certainly possible for an agent to believe LQ, FR and AS without believing GS, that Grant was 
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president in 1870. The question R does not overlap the other two questions, and so the belief FR 

does not automatically serve as a conduit to connect the other two views. That seems right: 

surely it is possible to have each of these pieces of information without having made an 

inference to that conclusion.

However, a different but truth-conditionally equivalent belief would link the views Q and S in a 

way that does transmit the new information from one view to the other. Consider the question 

R’, When was Lincoln president? Now let F’R’ be another quizposition equivalent to f. The cells of 

R’ represent possible start and end dates of Lincoln’s presidency. F’ is the set of all R’-cells at 

which there are four years between these two dates. Intuitively, you might think of the 

difference between believing FR and F’R’ in the following way: a view on R is just a number, or 

range of possible numbers, indicating the length of Lincoln’s presidency. But to have a view on 

R’, you need to mark the possible dates of Lincoln’s presidency out on a mental timeline. 

It is more cognitively demanding to have a view of the latter kind, but it pays off because a 

belief on R’ bears on a greater set of issues. In particular, R’ does overlap with Q: both contain the 

polar question Was Lincoln president in 1862 as a part. R’ also shares a part with S, namely Was 

Lincoln president in 1870. As a consequence, it turns out that if we keep the background beliefs AS 

and F’R’ fixed, adding the new belief LQ does necessitate adding the belief GS, that Grant was 

president in 1870.

Let’s go through it step by step. The belief LQ, Lincoln was president in 1862 contains as a part an 

affirmative answer Yes to the polar question Was Lincoln president in 1862. By partial closure 
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under conjunction, this part must be incorporated in the view on When Lincoln was president. 

Conjoining it with the existing view F’R’ that Lincoln was president for four years, you get Lincoln 

was president for four years between 1858 and 1866. Now the answer No to the polar question 

Was Lincoln president in 1870 is part of that quizposition. Using partial closure under conjunction 

again, this must become part of the view on S, Who was president in 1870. Conjoining it with the 

prior view on S, that Lincoln or Grant was president in 1870, we get the view GS, that Grant was 

president in 1870.

Formally speaking, the two cases examined in this section can be modelled using the notion of 

an inquisitive updates. In the classical case, one can characterise informational updates as 

follows: for any information state I and intensional proposition p, I + p is the smallest classical 

information state containing I  ∪ { p } as a subset. The notion of an inquisitive update is a 

generalisation of this idea: 

The inquisitive update of an inquisitive information state I by a quizposition AQ, 

written I + AQ, is the smallest inquisitive information state containing I ∪ { AQ } as a 

subset. (2.15)16

 To see that inquisitive updates are always well-defined, note that (a) the set of all quizpositions is itself 16

an information state (an incoherent one); and (b) any intersection of inquisitive information states is itself 

again an information state. It follows from (a) and (b) that for any set S of quizpositions, there is a 

smallest information state containing S. But just as classical updates do not always preserve the 

consistency of an information state, inquisitive updates do not always preserve coherence. So inquisitive 

believers can never update their belief state by a quizposition that fails to cohere with their prior views. 

Analogously, a classical believer can never update with information inconsistent with their prior beliefs. 

That is because such doxastic transitions require belief revision (see §2.8 for more on this).
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Basically, the updated state I + {AQ} represents the most conservative way the quizposition AQ 

can be incorporated into the the inquisitive information state I. It is maximally conservative in 

that it preserves all the quizpositions in I, adding in as few quizpositions as needed to 

incorporate AQ (while respecting closure under parthood and partial closure under 

conjunction). This notion of an update allows us to state our findings about MITTEN STATE 

MURDERS I and the Lincoln example more succinctly. 

We found that whenever the anterior belief state BX contains the tautologous quizposition 

DMDM, which unifies BX’s views on D and M, then BX + B1D must contain the quizposition that 

A1M, that Michigan had at least 200 murders. And so part of the reason that Mandy failed to see 

this consequence of her belief B1D is that her views on D and M are not unified in this way. If one 

updates Mandy’s antecedent belief state BM with the missing tautology DMDM, the resulting 

state BM + DMDM does contain A1M in addition to B1D. Thus certain deductive inferences can be 

captured as updates by tautologies –– this will be the topic of §2.8 below. In the Lincoln 

example, we found that, if an anterior belief state BY contains the premises F’R’ and AS, the 

updated state BY + LQ  is guaranteed contain GS. But if BY only contains the intentionally 

equivalent premises FR and AS, the posterior state BY + LQ  is not guaranteed to contain GS. 

Again, this accounts for the contrast between those for who, upon learning l, draw the 

conclusion g right away, and those for whom the inference is not immediate.

In both cases, the inquisitive theory of belief explains how the upshot of a new piece of 

information depends, not only on an agent’s background information, but also on the way an 

agent’s views are linked together by their background beliefs. As both cases show, beliefs about 
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bigger questions make for more connections and result in greater overall coherence of our 

beliefs. The biggest question of all is the discrete question W = { {w} : w ∈ 𝒲 } (also known as the 

Big Question; e.g. Roberts 2012). A believer with a view about W would have beliefs that are 

fully closed under entailment and conjunction, which is to say they would be a classical 

believer. The reason that ordinary, finite agents cannot achieve this ideal is that there is a cost 

associated with keeping track of the big questions: it is cognitively demanding to do so.

2.7  Computational Limitations 

Some inquisitive updates will radically alter a belief state, transforming views throughout the 

agent’s web of belief. Others affect only the view concerned and some of its parts. Taking 

inquisitive updates as models of real-life belief acquisitions, this is in accordance with 

experience: some of our discoveries are superficial, and can be incorporated without affecting 

the one’s other views much at all. But others affect deeply held beliefs, and cannot be fully 

accepted without sweeping, comprehensive changes in view on many matters. The natural 

expectation is that changes in view of the latter kind are more cognitively demanding. 

The immediate consequences of a new belief only come for “free” in the sense that no cogitation 

beyond the acquisition of the belief is needed in order to believe those consequences. The flip-

side of that is that the more of those consequences there are, the more complex and pervasive a 

cognitive change is needed for the belief to be acquired. Thus it is a non-trivial cognitive 

achievement to make one’s beliefs well-connected.
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Let me illustrate this with an example. I have a terrible sense of direction. When I am new in a 

city, I will figure out how to get from the hotel to the central square, say, and how I can get from 

the central square to the museum or the river bank, and from the museum to the restaurant. But 

having gathered all this information, I still will not be able to work out an even a half-way 

efficient route back from the restaurant to the hotel. Without a map, the safe option is just to 

retrace my steps: return to the museum, then back to the central square, then to the hotel; else I 

will probably get lost. My friend is very different. Given just the same information, she will 

identify the shortest way back in a heartbeat, even if it runs through a neighbourhood she has 

never seen before. 

Maybe my friend just has a better memory for these things than I do. But what is more 

important, I think, is the way she puts it together. My mental geography of the city is a chaotic 

patchwork of partially overlapping little maps, patched up with landmarks, mnemonics and 

other crutches. I only have answers to small, local questions about the city’s geography, which 

are barely connected to one another, and none of which have any bearing on unexplored areas 

of the city. My friend, on the other hand, sees the bigger picture. Her views about the geography 

of the city are more robustly connected because she keeps track of the big picture: she has views 

about the overall layout of the city that integrate her detailed views about the parts. This puts 

her in a position to see we have walked in a big circle, and that the hotel is just a few blocks 

away. Her beliefs answer bigger questions, and are better linked together.

Maintaining a high level of integration between geographical beliefs is cognitively demanding. 

My friend is better at it than I am, and you can improve your skills with practice. London cab 
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drivers make for an extreme example. To get a taxi license, they must pass a harrowing exam 

called The Knowledge, requiring three to four years of intensive training. Over the course of this 

period, they acquire the ability to efficiently deploy a vast amount of detailed geographical 

information in order to determine the fastest route from one place in London to another. It has 

been shown that in successful trainees, this learning process results in a significantly enlarged 

posterior hippocampus (Maguire et al. 2000, 2006, 2011).

On the one hand, this is a remarkable example of the way neuroplasticity allows human beings 

to go beyond their innate cognitive abilities. On the other hand, the finding that additional grey 

matter is required to achieve such levels of skill clearly implies that there are limitations to those 

abilities, and limitations to how far they can be stretched. There is only so much grey matter in a 

human skull, and there is only so much new grey matter one can grow –– if only because of 

space constraints. Already in the case of the cab drivers, the growth leads to a bit of a squeeze: 

the growth of the posterior hippocampus had a negative long-term effect on the anterior 

hippocampus (Maguire et al. 2000, 2006).

In §2.1 we discussed how, according to the classical theory, an agent who knows the exact 

scrambled state of a Rubik’s cube would also know how to unscramble it. In the inquisitive 

theory, we can model the mental state of someone who has all this information without 

knowing how to unscramble the cube. For instance, they might have the configuration of each 

side memorised, and remember how to fit the sides together. This knowledge would give them 

the ability reproduce the configuration of the entire cube, but it would not give them the ability 

to solve the cube. For instance, it would not tell them which side to twist first.
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What if an inquisitive agent were to put all this information together into an answer to the giant 

question What is the configuration of the Rubik’s cube, which has at least forty-three quintillion 

cells? Well, then they would be just like the classical agent, and they would just see how to solve 

the cube: for since the configuration of the cube determines the sequence of steps needed to 

solve it, the question How to solve the cube is part of this enormous question. But given our actual 

computational limitations, this is a merely theoretical possibility: we human beings are unable 

to achieve that level of fluency with Rubik’s cubes. (Some people can solve Rubik’s cubes very 

quickly. But they do it by memorising algorithms, and not by answering a forty-three quintillion 

cell question. )17

Note this is not just about failing to put all the information together into a single belief. For 

instance, an agent who can reliably tell whether or not a given configuration is identical to that 

of the cube under consideration knows that The cube is in configuration X in answer to the polar 

question Is the cube in configuration X or not. So such an agent has put all the required 

information together into one belief. There is nothing unrealistic about supposing someone 

might believe this quizposition, and it does not imply an ability to unscramble the cube. Our 

computational limitations put a ceiling on the size of the questions we mere mortals can have 

answers to –– not on the logical strength of the answers.

How high is this ceiling, exactly? How big can a question get before it becomes hopelessly 

intractable for an adult human being of average intelligence? The abstract theory does not tell 

 The most popular speed solving method in use is the Fridrich method, designed by steganographer 17

Jessica Fridrich –– see www.ws.binghamton.edu/fridrich/cube.html.
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us. Nor should it: just like classical view of belief and action, the inquisitive view is supposed to 

apply not only to human beings, but to a wide range of real and possible agents, which may all 

have different computational limitations. The theory allows us to pose questions about our 

cognitive computational limits more precisely. But to find the answers to such questions, 

empirical work is needed.

As a matter of fact, there is already some work in psychology that seems to bear on these 

questions. In particular, Philip Johnson-Laird’s (1983, 2006) work on mental models is relevant, 

as is Philipp Koralus and Salvador Mascarenhas’s (2013, 2018) work on the erotetic theory of 

reasoning. These authors have conducted experiments that provide empirical support for the 

basic idea that it is cognitively demanding to keep track of large questions with many 

alternatives. Johnson-Laird actually puts a number on it, estimating that an ordinary human 

being can keep track of no more than five to seven alternatives at a time in working memory. 

Given the particularities of Johnson-Laird’s theory, this observation does not straightforwardly 

carry over to the present context. I would estimate that we can have views about questions with 

much more than seven cells, particularly for beliefs on familiar topics about which we can make 

very quick inferences. But it is safe to assume that the limit is nonetheless a good deal lower 

than forty-three quintillion, which is what we would need to become instant Rubik’s experts.

One more remark about the Rubik’s cube example. Given chapter 1, it may come as a surprise 

that I should be hesitant to attribute knowledge of What the configuration of the Rubik’s cube is in 

this case, given that the agent is able to reproduce that configuration. Isn’t this the ability that 

corresponds to knowing What the configuration of the Rubik’s cube is? Well, it is, in the sense that 
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having this knowledge would entail having the ability to reproduce the configuration. But the 

entailment does not go the other way. We can also account for the agent’s ability to reproduce 

the configuration of the cube as a consequence of a collection of simpler abilities, each one 

requiring more modest, less demanding beliefs. For instance, say the agent’s beliefs about each 

of the six sides allow them to reproduce the configuration of that side. Having explained how 

the agent was able to reproduce the configuration of each side of the cube, we have also 

explained how they could reproduce the configuration of the entire cube. In this manner, we can 

explain the agent’s abilities on the basis of their beliefs, while at the same time avoiding the 

attribution of unrealistic levels of deductive closure (see §3.4 for more on this general strategy).

2.8  Tautological Updates and Deductive Reasoning 

One of the upshots from the last section is that it is an inevitable part of the human condition 

that we can never see all the entailments of our beliefs. Still, we can extend our logical reach 

considerably through mental effort and deductive reasoning. In particular, human beings have 

an ability to pose new questions, thereby forging new connections in our web of beliefs and 

allowing us to see consequences of our beliefs that were hidden at first.

As suggested by the discussion of MITTEN STATE MURDERS I in §2.6, one useful application fo the 

notion of an inquisitive update is to model this process, yielding a simple and attractive way to 

model some instances deductive reasoning. Once we understand why an agent was failing to 

see a certain consequence of what they believe, and which connections they were missing, this 
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yields a natural hypothesis about what was added in the deductive step from their prior belief 

to seeing this new consequence.

Take the case of Mandy in MITTEN STATE MURDERS I, who believes B1D, Detroit had at least 200 

murders, but not A1M, Michigan had at least 200 murders. As shown in §2.6, since her belief state 

Bm contains B1D but not its consequence A1M, Bm must be lacking the tautological quizposition 

DMDM. What is more, updating with this necessary truth leads to a posterior belief state 

Bm + DMDM that does contain A1M. And thus one natural way to account for Mandy’s cognitive 

achievement at the end of MITTEN STATE MURDERS I is to say that she performed the update 

B  ↦  B + DMDM. 

A similar observation can be made about the Lincoln example from §2.6. Suppose Bl is an 

inquisitive belief state that contains FR, Lincoln served as president for four years, AS, Lincoln or 

Grant was president in 1870 and LQ, Lincoln was president in 1862. And suppose it is missing the 

conclusion GS, Grant was president in 1870. Then Bl cannot contain the tautological quizposition 

R’R’ –– i.e. the trivial answer to the question When was Lincoln president. And the state Bl + R’R’,  

the result of incorporating that tautology, does contain GS. Thus, we can again model the 

deductive step from FR, AS, and LQ to GS as an instance of the update by a tautological 

quizposition.

Let us refer to updates of the form I ↦ I + QQ as tautological updates. As the Mandy and 

Lincoln examples illustrate, it is natural to use such updates to model certain simple deductive 

inferences. Not all deductive inferences can be understood as the result of tautological belief 
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updates. For instance, hypothetical reasoning proceeds on the basis of a body of information 

that includes tentative hypotheses and not just the agent’s established beliefs (as in reductio ad 

absurdum and in proof by cases). Nonetheless, tautological updates make for a neat and intuitive 

example of the way the inquisitive picture, having eliminated closure under entailment, makes 

room for systematic theorising about deductive inference.

Since tautological quizpositions do not carry any new information, the beliefs an agent acquires 

as a result of a tautological update are always beliefs in quizpositions that were already entailed 

by the agent’s antecedent beliefs. Nonetheless, tautological updates can lead to new, contingent 

beliefs, and they can percolate through an agent’s web on belief the same way as contingent 

updates do. For instance, it is easy to imagine how, given suitable background beliefs, Mandy’s 

finding that Michigan had over two hundred murders has a downstream effect on her other views 

about Michigan.

Figure 7 illustrates the abstract situation. Here we start out with a belief state containing views 

on Q0, R and S, and then perform a tautological update that refines the question Q0 to Q1. The 

resulting view A1Q1 has the same truth conditions as A0Q0. However, the new question Q1 this 

view addresses overlaps with R, and A1Q1 rules out some cells in the overlapping part. Thus the 

update strengthens the agent’s view on R from B0R to B1R. This change in view about R in turn 

affects the agent’s view on the question S, which also overlaps with R. Thus the update by Q1Q1 

causes a change in view about S, even though Q1 does not overlap with S at all. In the same way, 

the update can percolate further down the daisy chain, spreading throughout the agent’s web of 

questions.
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FIGURE 7: A TAUTOLOGICAL UPDATE ON LINKED VIEWS

Thus, on the inquisitive model, the acquisition of new tautologous beliefs can lead to all sorts of 

new contingent beliefs, including beliefs about questions unrelated to the question the added 

tautology is about. We can think of a tautological update as modelling what happens when an 

agent poses a new question for the first time, where we understand the “posing” of a question 

Q as the acquisition of an inquisitive view about Q. The mapping I ↦  I + QQ is the natural 

formalisation of this idea: its output I + QQ is the smallest extension of the information state I 

that includes a view about Q.

Thus the inquisitive model of belief naturally yields a formal implementation of the idea of 

deduction as a question-guided endeavour –– compare Pérez Carballo 2016, and Friedman 2017, 

2019. Think of the slave boy from Plato’s Meno. Guided by the questions that Socrates asks him, 

the boy reasons his way to the conclusion that the diagonal of a square of size one is equal to the 

side of a square of size two. From the outset, the boy already has all the basic geometric 

↓

A0Q0 B0R C0S

A1Q1 B1R C1S

+ Q1Q1
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intuitions he needs to figure this out. But he only arrives at the right conclusion after thinking 

through Socrates’ strategically posed questions.

The first half of this chapter (§2.1-5) concerned the statics of belief. With the introduction of the 

notion of an inquisitive belief update, we have now made our first foray into the dynamics of 

inquisitive belief. Belief updates model the addition of new beliefs to a state, with preservation of 

the agent’s prior beliefs. There are many other kinds of changes a belief state can undergo. A 

fuller dynamics of belief may include a treatment of other kinds of belief change as well. In 

particular, in both the classical and inquisitive theory, simple belief updates cannot account for 

the situation where agents acquire new information that conflicts with their extant beliefs: in 

those situations, the agent is forced to give up some of their old beliefs, in addition to acquiring 

a new one.

In the classical theory, this issue comes up because classical updates do not preserve 

consistency: if you update a classical information state I with an intensional proposition p that 

is inconsistent with it, you always end up with the inconsistent classical information state, 

which contains every intensional proposition, and does not represent a possible classical belief 

state. In the inquisitive theory, inconsistency does not by itself present problems, since there are 

possible inconsistent belief states. Instead, belief revision is forced when an update fails to 

preserve the coherence of the information state. This can happen even if the agent updates with a 

tautology. That situation can arise when an agent comes to see the inconsistency of their 

previous beliefs by means of deductive reasoning.
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Consider for example MICHIGAN MURDERS II. At the end of this version of the story, Mandy’s 

belief state Bi is inconsistent, since it includes both the quizposition B1D, that Detroit had over 200 

murders, and also the quizposition ¬A1M, that Michigan had no more than 200 murders. As 

discussed, Bi is an inconsistent but coherent belief state. However, if Mandy were to combine 

her beliefs about Detroit and Michigan in this situation, she would run into incoherence: the 

updated information state Bi + DMDM includes both the quizposition A1M and the quizposition 

¬A1M, and therefore also their conjunction ⊥M.

Clearly, this update does not accurately represent Mandy’s change in doxastic state: the 

incoherent information state Bi + DMDM is not even a possible belief state.  In particular, Mandy 

would not end up believing ⊥M, that Michigan had no more than and more than 200 murders. This 

is a situation in which it becomes evident to Mandy that her prior beliefs were inconsistent, not 

a situation in which her beliefs themselves turn incoherent. How does that realisation in fact  

affect Mandy’s beliefs? Well, if Mandy is to acquire the new belief DMDM, she must abandon 

some of her prior beliefs to avoid incoherence. In the case as presented in §2.4, Mandy would 

probably discard her prior belief that ¬A1M, recognising that her grounds for believing A1M are 

stronger. In a different scenario, Mandy might give up B1D and A1M instead, or suspend 

judgment on the matter.

 

The reason this doxastic transition cannot be modelled using updates alone is that it inevitably 

involves Mandy discarding one of her prior beliefs. Notoriously, modelling belief subtraction or 

revision is a much trickier matter than modelling simple belief addition. There are, however, 

plenty of proposals in the literature –– notably Alchourrón, Gärdenfors and Makinson 1985; Van 
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Ditmarsch, Van der Hoek, and Kooi 2007, Van Benthem and Pacuit 2011. While I will make no 

attempt to do so here, I think considerable interest attaches to the project of extending such 

models of belief revision to the inquisitive setting, because the additional resources of the 

inquisitive framework may put us in a position to do better justice to the relevant cognitive 

phenomena. In particular, I think the weblike structure of inquisitive beliefs may help us 

understand why belief revisions ordinarily have fairly localised effects.

2.9  Conceptual Limitations 

Not all tautological belief updates can be achieved through deductive reasoning. In §2.7, we 

already saw that our finite computational resources limit the size of the questions we can hope 

to acquire views about. But our conceptual resources are limited too, and this puts a different 

kind of constraint on the questions we can ask. For example, consider the following question:

P: Are pineapples from South America? 

It is certainly not beyond the capacity of the human mind to form a view about the simple polar 

question P –– many of us have. And yet, we can be certain that Aristotle never did it.

In the time of Aristotle, no European had ever been to South America, or seen a pineapple. It is 

not for lack of computational power that Aristotle was unable to ask this question. Deductive 

reasoning alone could never have gotten Aristotle from his actual belief state BA to the state 

BA + PP. To make this transition, Aristotle would have had to learn some new concepts first, in 

particular the concept of a pineapple and the concept of South America. Acquiring those 
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concepts, in turn, would have required pineapples to be discovered two millennia earlier, and it 

would plausibly require some world knowledge on Aristotle’s part. He could not have arrived 

at BA + PP from the armchair.

Likewise, before you started reading this paragraph, you (the reader) were in no position to 

reason yourself to the belief that Either the village of Komminenivaripalem is in the mountains or it is 

not in the mountains, for the simple reason that you had never heard of that village. (In a way, I 

ruined this particular example by telling you about Komminenivaripalem. Now that you know 

about the place, you are plausibly in a position to start forming beliefs about it. But an hour ago 

you could not. And even right now I could make an analogous point about a different village –– 

I am not telling you which one!) 

Here is a slightly more complex example from Stalnaker. King William believed he could avoid 

war with France. But he did not, it seems, believe that he could avoid nuclear war with France 

(Stalnaker 1984; Yalcin 2011, 2018 also discuss this example, making a similar point about it). It’s 

not because of a lack of logical acumen that this 17th-century monarch failed to see that 

particular consequence of his beliefs. William had no idea what a nuclear weapon was, and it 

seems no amount of reflection or deduction on his part would have fixed that. And yet he is 

only a tautological update away from seeing this consequence. 

To see this in a bit more detail, let E be the polar question Will England have a war with France or 

not. Now suppose King William’s belief state BW contains the quizposition AE, that England will 

avoid war with France. Let F be the tripartite question Will England have a nuclear war with France 

99



or some other kind of war or no war at all: this question contains E. The tautologous answer to F is 

FF, that Either England will have a nuclear war with France or some other kind of war or no war at all. If 

William were able to distinguish the possibility of nuclear war from other kinds of war, he could 

perform a tautological update, moving from the prior state BW to the state BW + FF. Besides the 

quizposition AE, William’s posterior state BM  +  FF would then include a view on the new 

question F that includes the quizposition BF, England will avoid nuclear war with France. Again, 

reason William is in no position to make this transition is not because he does not have the 

computational resources: rather, he lacks the relevant concepts.

In §5.7 below, I suggest a different, more contentious example of a tautological belief update 

that cannot be achieved a priori: the famous case of Lois Lane. Lois believes that “Superman” 

refers to Superman, and she also believes that “Clark Kent” refers to Clark Kent. At all worlds where 

those two beliefs beliefs are true, it is also true that the names “Superman” and “Clark Kent” refer to 

the same person. Thus Lois’ discovery that this is so can be modelled as a tautological belief 

update. Her belief about S, To whom the name “Superman” refers, and her belief about K, To whom 

the name “Clark Kent” refers can be brought together by joining them into a view about SK, To 

whom do the names “Superman” and “Clark Kent” refer. But clearly this is a substantial discovery, 

not an a priori finding. Thus the update BL  ↦  BL +  SKSK  is not a deductive step for Lois: 

making this step would require her to sort out her identity confusion first (for more details on 

this, see §5.7).
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2.10  A Good Question is Hard to Find 

Besides our computational and conceptual limitations, another obstacle in the way of seeing the 

consequences of one’s beliefs is knowing which questions to ask. Because any tautological 

update requires a certain amount of cognitive effort to process, and because resources are 

limited, we cannot form a view on every question. So when we engage in deductive reasoning, 

we must inevitably make choices about which questions to look into (cf. also §3.4 below). In the 

Meno, Socrates’ strategic questioning helps the slave-boy precisely because it relieves him of this 

part of the cognitive labour. As that example illustrates, sometimes the most difficult part of a 

deduction is not performing the update itself, but rather knowing which update to perform. 

Hitting on the right question to ask can require insight or luck.

Here is a case from the psychology literature which illustrates the point (Levesque 1986, Toplak 

and Stanovich 2002). Based on the following three pieces of information, can you say whether or 

not an unmarried person is looking at a married person?

1) Jack is looking at Kate and Kate is looking at George

2) Jack is unmarried

3) George is married

Take a moment to picture the situation and think it through. 

In Toplak and Stanovich’s survey, 86% of the respondents answered that the correct answer 

cannot be determined on the basis of the information provided. However, as a matter of the fact 
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it can. This becomes easy to see once you are given the following hint:

4) Either Kate is married or she is unmarried

Once those two possibilities are separated, the answer becomes clear. If Kate is married, then 

Jack is an unmarried person looking at a married person, because Jack is looking at Kate. If Kate 

is unmarried, then she herself is an unmarried person looking at a married person, because she 

is looking at George. It is striking how an instance of the law of the excluded middle transforms 

an otherwise elusive inference into a no-brainer. This makes (4) an unusually simple and elegant 

example of an informative tautology. 

The inquisitive view of belief accounts for this phenomenon as follows. Conjoining the the three 

given premises (1-3) is insufficient to arrive at the conclusion that an unmarried person is 

looking at a married person. But it is part of the conjunction of (1-4). To see this, associate 

premises (1), (2) and (3) with the quizpositions AL, BJ and CG respectively where

L: Out of Jack, Kate and George, who is looking at whom?

J: Is Jack married?

G: Is George married?

The task confronts subjects with something like the following question:

Q: Who out of Jack, Kate and George is unmarried? And who is looking at a married person?

And the target conclusion is:

DQ: One of Jack, Kate or George is an unmarried person looking at a married person.

In approaching this problem, the natural first step is to put all the given information together 

into a single representation. This may be modelled as an update with the tautologous 

quizposition LJGLJG. This takes a state in which AL, BJ and CG are believed individually to a state 
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where their conjunction ABCLJG is also believed. However, this update is not sufficient. The 

conjunction ABCLJG entails the conclusion DQ, but because Q is not part of LJG, the quizposition 

ABCLJG does not contain DQ as a part. A further step is required to get from the view ABCLJG to 

the target conclusion DQ. 

Some other simple strategies to get at the answer also fail in this case. For instance, it is natural 

to break up Q into simpler questions: Is Jack an unmarried person looking at a married person, Is 

Kate an unmarried person looking at a married person and Is George an unmarried person looking at a 

married person. ABCLJG fails to settle the first two questions, and entails a negative answer to the 

latter. From these results one might reasonably conclude that the given information is 

insufficient to settle whether DQ is true. Plausibly, that is where the inquiry halts for most of 

Toplak and Stanovich’s respondents.

The only way to arrive at the target conclusion is to make a further distinction. We need to 

separate two possibilities that LJG joins together: namely the possibility that Jack and Kate are 

unmarried and only George is married, and the possibility that only Jack is unmarried and Kate and 

George are married. Separating of these two scenarios involves conjoining ABCLJG with the content 

of (4), Either Kate is married or not. This is the tautologous quizposition KK where

K: Is Kate married?

After that further adjunction, the subject’s overall view of the situation is ABCKLJGK; and since 

LJGK does contain Q as a part, it follows that they now believe the target conclusion DQ as well.

There is some amount cognitive effort involved in making the extra distinction taking you from 
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ABCLJG to ABCKLJGK. But the students Toplak and Stanovich interviewed could all have made this 

further reasoning step if prompted. The explanation for why most of them failed to take this 

step does not lie in the intrinsic difficulty of the update. Rather, the students must have 

overlooked the question K for some reason. It may be that it simply did not occur to them: there is 

experimental evidence that reasoners are in general better at recognising a good question when it 

is presented to them than they are at coming up with good questions on their own (Rothe, Lake 

and Gureckis 2018). It is also also possible they did consider the question, but made an a priori, 

metacognitive judgment that it was not worth looking into. 

In this particular context, two factors may contribute to that decision. Firstly, the fact that they 

were not given information about Kate’s marital state could be taken as an indication that this 

issue is irrelevant. There is empirical evidence showing that reasoners are generally reluctant to 

think through a question when they know in advance that the answer is unknown (Toplak and 

Stanovich 2002, Shafir 1994, Tversky and Shafir 1992). Secondly, the fact that other lines of 

inquiry do not resolve the matter may have given rise to an overriding impression that the 

information provided was inadequate, and that further cogitation is pointless.

The fact that we cannot ask every question means we inevitably need some heuristic that will 

decide which questions to ignore and which to consider. And that heuristic must be prior to 

actually thinking through the questions. For instance, conjoining ABCLJG with the tautology 

Either George owns two camels or he does not also make some new consequences available. But 

since you know a priori that none of those consequences will be of help in resolving the task at 

hand, you would never look into that question. It is safely ignored. In the case at hand, the 
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question K apparently does not appear fruitful to most people, although that appearance is 

misleading.

2.11  Derivation of the Inquisitive View 

Given that the notion of a propositional part comes out of the literature on truthmakers, and 

was developed for independent reasons, it is really remarkable that it should re-emerge so very 

naturally from the inquisitive way of thinking about belief-guided action. In this subsection I 

give a formal demonstration of the connection between the inquisitive view of individual 

beliefs (1.12) and of belief states (2.12) that was established informally in §2.5. Each of the three 

inquisitive coherence constraints is a strict weakening of a classical constraint: closure under 

parthood is weaker than closure under entailment, partial closure under conjunction is weaker 

than full closure under conjunction, and coherence is weaker than consistency. (Recall that the 

definition for entailment between quizpositions is the same as the definition for entailment 

between intensional propositions: one quizposition AQ entails another quizposition BR just in 

case BR is true at all worlds where AQ is true.) The derivation of each requirement closely 

parallels the classical one from §2.2. In particular, the derivations here also rely on something 

like the Quacks-Like-A-Duck principle (2.3).

The starting point, recall, is the inquisitive view of individual beliefs (1.2), formalised in (1.12):

Individual Beliefs (Inquisitive Formalisation). Belief is a relation between agents 

and quizpositions. An agent believing the quizposition AQ is disposed to avoid 

A‑dominated options in decision situations that raise Q. (1.12)
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The reason an inquisitive agent cannot believe a contradiction is simple: (1.12) entails that an 

agent believing ⊥Q would need to be disposed to perform every option in decision situations 

that raises Q, which is absurd. That establishes the coherence requirement.

Next up is closure under parthood. Let BR be any part of AQ, and suppose some agent α believes 

AQ. We want to show that α also has the disposition (1.12) associates with believing BR, namely 

to avoid B‑dominated options when facing R. So suppose α makes a choice ∆ that raises R, and 

suppose some option a in ∆ B‑dominates some alternative b in ∆. Then by (2.13), ∆ also raises 

Q, and since AQ entails BR, it follows from the fact that a(r) > b(r) for all r ∈ B that a(q) > b(q) for 

all q ∈ A. And thus, because α avoids A‑dominated actions when faced with Q, α will forego the 

option b. So α will forego every B‑dominated option when confronted with R. And in general, α 

will have every disposition that (1.12) associates with believing any part of AQ. Thus (1.12) 

motivates closure under parthood. This argument does not generalise to show that inquisitive 

beliefs are closed under entailment. The reason is that, given (1.12), a stronger belief is 

guaranteed to address the same as choices a weaker belief only if it answers a bigger question.

That leaves partial closure under conjunction. As in the classical case, we need to appeal to 

composite choices here. Suppose A and B are answers to Q and R respectively, where R is any 

part of Q. We can again show that no agent who fails to avoid AB-dominated options when 

faced with Q can succeed in both avoiding A-dominated options when faced with Q and also 

B‑dominated options when faced with R. Consequently, anyone who believes AQ and also 

believes BR, and hence succeeds on both fronts, also has the disposition (1.10) associates with 

believing ABQ.18
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This proof considers a composite choice consisting of a Q‑raising choice ∆Q and an R‑raising 

choice ∆R, and requires that the belief in one of these conjuncts, say AQ, guides not only the 

agent’s choice in ∆Q but also the composite choice. That is to say, the argument only goes 

through if Q addresses the composite choice as well. However, the combined outcomes of two 

choices ∆Q and ∆R in general depends both on the question Q and also on the question R: that is 

to say, the composite decision problem raises the question QR. And QR = Q just in case R is part 

of Q. That is why we do not get full closure under conjunction, but only partial closure.18

There is one more question left to address. We showed that coherence can be established by the 

same argument used in the classical case: incoherent beliefs would yield impossible predictions 

about what the agent will do. But why doesn’t this reasoning imply cross-question consistency 

as well? After all, a single decision problem can raise multiple different questions. The same 

 Let A and B be answers to Q and R respectively, where R is any part of Q. Suppose some agent α is 18

disposed to avoid B‑dominated options when faced with R, but not to avoid AB‑dominated options when 
faced with Q. So α sometimes chooses b over the alternative a in a Q-raising choice ∆ where b(q) < a(q) 
for all q ∈ AB. We show that having made such a choice, α cannot in general avoid A‑dominated options 
when faced with Q either. 

Suppose that right after choosing b over a, α faces a choice { o, x } between a constant option o yielding 0 
utility, and an option x that returns a positive value ε if BR is true, but imposes a cost –C if BR is false. Since 
R addresses this choice, and x strictly B‑dominates o, the agent will choose x over o. Now we can select ε 
and C so that

b(q) + x(q) =     { b(q) + ε < a(q) for all q ∈ AB 

   b(q) – C < a(q) for all q ∈ A\AB 

For instance, put ε = ½ · min{ a(q) – b(q) : q ∈ AB }, and C = max{ b(q) – a(q) : q ∈ A\AB } + 1. But then α’s 
overall course of action b + x is A‑dominated by a + o. What is more, the composite decision problem 
raises QR, and because R is part of Q, QR = Q. So α chose an A‑dominated option while faced with Q. 
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reasoning implies that the agent’s beliefs about all the questions raised need to render the 

consistent verdicts. But that seems to imply that the agent’s beliefs about those different 

questions should be consistent with one another as well.

It is true that the argument takes us a little bit further, but a more careful analysis shows it does 

not take us all the way to consistency (and the condition it does justify is already implied by the 

three conditions established above). To see this, suppose some decision problem ∆ raises both Q 

and R, and suppose the agent has views VQ and WR about these questions. Then, in order to 

guarantee consistent predictions, we need it to be the case that VQ and WR together do not 

render every option in ∆ strictly dominated. This implies that the views VQ and WR have to 

harmonise in a way, but not that they have to be consistent with one another.

 

To see this, let me begin by noting that it follows from the fact that Q and R both address ∆ that 

the overlap of Q and R, call it S, must also address ∆. To see this, let a be any option in ∆: we 

need to show that for any worlds w and v such that w ~S v, a(w) = a(v) (definition 1.8). To see this 

let pw = { v :  a(v) = a(w) }. Since Q and R both address ∆, it must be that pw is both equivalent to 

some (possibly partial) Q-answer and also to some (possibly partial) R‑answer. But then pw must 

be equivalent to a (possibly partial) S-answer, for if there was an S-cell bigger than pw, S would 

not be the largest common part of Q and R. Hence it follows from the fact that v ~S w that v ∈ pw, 

whence a(w) = a(v). 

Now because Q and S both address ∆, and S is part of Q, all and only the actions in ∆ that are 

V‑dominated are also V/ S‑dominated, where VQ is the agent’s view on Q. For the worlds w at 
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which V/ S is true all share an S-cell with a world where VQ is true, and the utility value of the 

options in ∆ does not vary within an S-cell. For the same reason, letting WR be the agent’s view 

on R, the actions in ∆ that are W‑dominated are also W/ S‑dominated. Thus the requirement that 

there be some action in ∆ that is neither V‑dominated nor W‑dominated boils down to the 

requirement that there is an action in ∆ that is neither V/S‑dominated nor W/S‑dominated. And 

this is guaranteed just by the fact that the S-parts V/S and W/S of the agent’s view be consistent 

with each other, which is a weaker constraint that the consistency of VQ and WR.

In short: to guarantee that the views VQ and WR give the same guidance in all decision 

situations where both of them apply, we do not need the views to be consistent. We only need 

them to be consistent in the overlap. To see that this is indeed a weaker requirement, consider 

figure 8 below. The two views displayed at the top are inconsistent with one another: there is no 

possible world where both are true. They also overlap with one another: the overlapping part is 

displayed underneath. But in spite of their overall inconsistency, what these two views say 

about the question in the overlap is consistent, and this is enough to guarantee that they will 

provide consistent guidance in any decision situation addressed by both of the big questions.

FIGURE 8: INCONSISTENCY BETWEEN OVERLAPPING VIEWS
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Now, you may recall that closure under parthood and partial closure under conjunction 

guarantee that V/S and W/ S are not only consistent with one another but in fact identical, as is 

in fact the case with the views represented in figure 8 (this is the principle (2.14) above). For that 

reason, this requirement does not need to be added to the characterisation of an inquisitive 

belief state as a separate condition.

Say a set of quizpositions S is unbelievable if and only if, given (1.12), no coherent set of 

behavioural dispositions is described by the beliefs in S. And say S is incomplete if and only if, 

given (1.12), some strict superset of S describes the exact same behavioural dispositions as S 

does. Then we can state the result of this section as follows: the coherence constraints of (2.12) 

rule out all and only those belief states that are either unbelievable or incomplete. 
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Chapter 3.
Inquisitive Decision Theory

In this chapter, we add the final building block we need for a fully fledged inquisitive decision 

theory: the account of uncertainty. To bring uncertainty into the picture, we simply replace the 

views from the classical and inquisitive treatments of belief states with probability distributions. 

All the credences of a classical agent form a single probability distribution, while the credences 

of an inquisitive agent make a probability distribution for each question on which they have a 

view. Those question-directed probability distributions are not separate. They are linked by 

their thematic connections in much the way full inquisitive beliefs are linked: where they 

concern overlapping questions, the inquisitive credences match on the overlapping part.

Sections §3.1-2 discuss the classical treatment of uncertainty, and explain how the limitations of 

the classical theory observed above emerge in a probabilistic context. §3.3 introduces the 

inquisitive account of uncertainty, comparing it to both inquisitive full belief and to classical 

uncertainty. In §3.4, I show how inquisitive decision theory helps us theorise about deliberation. 

In §3.5, I examine the similarities and differences between inquisitive decision theory and the 
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fragmentation accounts of belief developed of Elga and Rayo 2016, 2019 and Yalcin 2018. I 

conclude that the holistic nature of the present theory clearly distinguishes it from those 

approaches, and indicate why I think it provides a more compelling solution to the problems of 

the classical picture.

3.1  Classical Uncertainty 

In classical decision theory, an agent’s credences form a probability that is defined on every 

intensional proposition, and this determines an expected value for every possible option: 

A classical probability is a total function Pr: 𝒫(𝒲) →  [0,  1] from intensional 

propositions to the unit interval, subject to the following conditions: 

i) Normalisation: Pr(𝒲) = 1 

ii) Additivity: For any inconsistent (disjoint) intensional propositions p and q,   

Pr(p ∪ q) = Pr(p) + Pr(q) (3.1)

Let Pr be a classical probability and a an option. Then a’s expected utility given Pr is

EPr(a)  :=  Σw ∈ 𝒲 Pr({w}) · a(w) (3.2)

As before, I am assuming here that the space of possible worlds 𝒲 is finite.

To translate these expected utilities into behavioural predictions, we say that an agent’s 

preferences between options align with the expected utilities. Faced with any decision problem, 

the agent will be disposed to perform whatever option has the highest expected utility. If there 
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is a tie for highest value, the theory does not say which winner is chosen. If we call that  

behaviour maximising expected utility, then we can formulate the classical view of credence 

states as follows:

Classical Credences. An agent α’s credences form a classical probability Crα, and 

manifest themselves in a disposition to maximise expected utility with respect to 

Crα in any decision situation. (3.3)

The classical view of credences (3.3) is closely linked to the classical view of belief states (2.2) 

and the classical view of individual beliefs (1.10). To see this connection, assume that outright 

belief or certainty is equivalent to credence 1. I admit that I am cutting some corners in making 

this identification: it is well known that credence 1 is in fact strictly weaker than absolute 

certainty, because the two clearly come apart in infinitary contexts (see e.g. Williamson 2007). 

But the distinction is subtle enough that we can safely ignore it for present purposes, especially 

since we are assuming anyway that 𝒲 is finite.

If we do identify full belief with credence 1, then the classical views of belief states (2.2) and 

individual beliefs (1.10) are are corollaries of the view about credences (3.3). The definition of a 

classical probability (3.1) entails that propositions with probability 1 are consistent, and that 

they are closed under conjunction and entailment. Furthermore, (3.3) associates the same 

disposition with credence 1 as (1.10) associates with belief:

Crα(p) = 1 if and only if α is disposed to avoid p-dominated options in any decision 

problem. (3.4)
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For if Crα(p) = 1, ECrα(a) > ECrα(b) whenever  a(w) > b(w) for all w ∈ p. Thus (3.3) entails that α 

will forego p-dominated options if Crα(p) = 1. Conversely, if Crα(p) < 1, (3.3) says α will bet 

against p whenever the cost is low enough and the potential reward is high enough, and thus 

will not in general avoid p-dominated options.

That is not to say that (3.3) is strictly stronger than (2.2) and (1.10). For interestingly, there is also 

a sense in which (3.3) is already contained in (1.10). In the last chapter, we saw that the classical 

view of belief states (2.2) can be viewed a natural consequence of the the classical view of 

individual beliefs (1.10). The same is true of the classical view of credence states (3.3). The 

reason for this is that it is implicit in (1.10) that classical believers can never make a sequence of 

bets that are guaranteed to result in a net loss. Or to use the jargon, they can never be Dutch 

booked.  And it is fairly well-known that, modulo some constraints, the only way to immunise 19

yourself from all possible Dutch books is to maximise expected utility with respect to some 

unique probability (this is theorem 4.12 in Chapter  4 below; see also Ramsey 1926, Lehman 

1955, Hájek 2005, Elga 2010). Thus, modulo a few assumptions, the three basic views that 

constitute the classical picture, the view of individual beliefs (1.10), the view of belief states (2.2) 

and the view of credences (3.3), are all inter-derivable.

 Say an option b is absolutely dominated if there is an an alternative a such that a(w) > b(w) for every 19

world w ∈ 𝒲. Now (1.10) says that an agent who believes p is disposed to avoid p-dominated options in 

every choice they make. Since absolutely dominated options are p-dominated, it follows that any classical 

believer will avoid absolutely dominated options in every choice they make. In Chapter 2, I clarified that 

this is supposed to cover composite as well as simple choices. Thus (1.10) entails that no classical believer 

will make a sequence of choices that is guaranteed to lose them utility. 
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3.2  Logical Omniscience and the Preface Paradox 

Even though the classical view of credence states (3.3) in some sense entails the classical view of 

outright belief states (2.2), it is not obvious that every problem I raised for (2.2) should also 

affect (3.3). For (3.3) matches up with (2.2) in that classical certainties are consistent and closed 

under conjunction. But now consider the set of all intensional propositions in which an agent is 

confident, in the sense of having, say, credence 0.8 or higher. This set will ordinarily be 

inconsistent and it will not be closed under conjunction. So there is at least a prima facie 

appearance that the shift from full beliefs to credences could account for some of the 

phenomena we have been concerned with in this dissertation.

The preface paradox makes this concern vivid (Makinson 1965). A history professor is confident 

about, and willing to act on, every single one of the historical claims p1, p2, …, p853 she makes in 

her lengthy book. But in the book’s preface, she expresses confidence that not all the claims are 

true, which is to say that ¬⋂ i pi. If all you have are classical information states, you cannot 

straightforwardly account for the professor’s attitudes. But once credences are on the table, the 

problem goes away. Classical probabilities can attach a high probability to each conjunct pi 

while also assigning a low probability to their conjunction ⋂i pi. However, the move to 

credences does not address the sorts of issues about memory retrieval and deductive failure that 

have occupied us in this dissertation. To see why, I need to say more about the way of the 

classical idealisations resurface in context of the classical view of credences (3.3).
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For a start, the move to credences certainly will not help account for the hyperintensional 

contrast that the original ROMEO RECALL and TRIVIAL TROUBLE cases highlighted. After all, the 

objects of classical credences are still intensional propositions, and in these cases only a single 

piece of information is in play: respectively, Romeo’s number is 212-529 6300 and “dreamt” ends in 

-MT. In each example, the agent acts on this intensional proposition in one situation, and fails to 

act on it in another. No matter what credence we say they have in this proposition, (3.3) is not 

going to account for that contrast. At most, (3.3) suggests that Tom of TRIVIAL TROUBLE should be 

more prone to give the sphinx the right answer than to spell his letter correctly, since the stakes 

are higher in the former situation.

Closure under single-premise entailment in (2.2) is mirrored in (3.3) by the fact that any 

credence state Cr assigns greater probability to weaker propositions: whenever p entails q, 

Cr(p) ≤ Cr(q). So given (3.3) it is not just impossible to be certain that Detroit had 200 murders 

without also being certain that Michigan does, but also impossible to deem it likely Detroit has a 

high murder rate without deeming it at least as likely that Michigan does (as before, I am treating 

this as a single-premise entailment, ignoring the possibility that Detroit is in a different state). 

Mandy from MITTEN STATE MURDERS I acts only on the former proposition. But (3.3) wrongly 

predicts she should be equally or more prone to act on the latter proposition. Relatedly, (3.3) 

cannot adequately capture Mandy’s mental state in MITTEN STATE MURDERS II either: when p and 

q are inconsistent, one cannot have high credence in both, since Cr(p) ≤ Cr(¬q).

Multi-premise entailments are where things get more interesting. Again, (3.1) links the 

likelihood of the conclusion to that of the premises, but this time the connection is weaker:
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If p1, p2, …, pn entail c, then Pr(c) ≥  1 – Σi Pr(¬pi). (3.5)20

Crucially, (3.5) does not guarantee the transmission of confidence in the premises pi to 

confidence in the conclusion c. Confidence in pi guarantees that Cr(¬pi) is small, but those small 

numbers can add up. However high confidence in the premises is, as long as there are a lot of 

them, it is compatible with (3.5) that the credence in c is low, even when that means that the 

agent is confident in an inconsistent set of propositions {p1, p2, …, pn, ¬c}. That is why the 

classical view of credence (3.3) has an easy treatment for the preface paradox, which turns 

essentially on the multitude of propositions involved.

So the interesting question is how much sense classical decision theory can make of an agent’s 

failure to see the conclusion of a many-premise entailment, as in the following example:

SILENT SUDOKA: Expert sudoku solver Sarah is shown The World’s Hardest Sudoku 

(Hutchinson 2010). After studying the puzzle, with its twenty-one clue entries, for 

some amount of time, she is offered a prize if she can say in which column the “4” 

in the fourth row goes. Not having made much progress with the puzzle, Sarah 

guesses the “4” goes in column 7; but in fact the correct answer is column 3.

On the face of it, SILENT SUDOKA does not conflict with (3.5). Twenty-two pieces of information 

are needed to derive the correct solution, if we count each clue entry as separate puzzle pieces 

and the rules of sudoku as the final piece. Call those propositions the premises e1, e2,… e22. These 

premises entail c3, where cn is the proposition that the “4” in the fourth row goes in the nth column. 

 Proof. Note Pr(q ∩ p) ≥ Pr(q) – Pr(¬p); by induction we get Pr(⋂n pn) ≥ 1 – Σn Pr(¬pn); the inequality (3.5) 20

then follows from the single premise closure property: Pr(c) ≥ Pr(⋂n pn) ≥ 1 – Σn Pr(¬pn).
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Even if Sarah memorised all the clues, and is 95% confident in each ei, then for all (3.5) says, her 

credence in c3 could be 10%, or even 0. So (3.3) does have a way to account for Sarah’s choice.

On closer examination, there are in fact two possible classical explanations. But they are not 

what you might expect. The obvious explanation for Sarah’s inability to identify the right 

column is related to the fact she has not solved the sudoku. In particular, she has not worked 

out any connection between the twenty-two pieces of information she was given, and the 

position of the ‘4’ in the fourth row. After all, this is an extremely difficult sudoku that would 

take even an expert solver days to solve. However, this kind of explanation is not available to 

the classical theory, which needs to work around the fact that Sarah’s conditional credence in c3 

given the premises ⋂i ei is inevitably equal to 1.

That leaves two possibilities. One is that, for whatever reason, Sarah’s credences in the premises 

ei are not independent, and that she perceives a strong tension between them. For instance, 

Sarah could be certain that their conjunction ⋂i ei is false, but be unsure which premise ei is 

false. On this explanation, Sarah’s confidence that ⋂i ei is false means she puts no stock in its 

consequences either. The other possibility, which overlaps with the first, is that Sarah has a 

strong prior leaning towards column 7 specifically, so that her credence in c7 outweighs her 

above-average credence in c3.  21

 (3.3) predicts Sarah will choose column 3 over column 7 if Cr(c3) > Cr(c7), where Cr is her credence 21

function. If Sarah perceives no tension between the premises, her credences in the premises are at least 

independent. Thus Cr(c3) ≥ Cr(⋂ n en) ≥ 0.9522 ≈ 0.32, because Cr(c3⎜⋂ n en) = 1. But then Cr(c3) > Cr(c7) 

unless Cr(c7⎜¬⋂ n en) > 0.48. So c7 would have to be over eight times more likely than the other eight 

columns, conditional on ¬⋂ n en.
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Now these are both possible explanations of Sarah’s choice of column 7. Perhaps she has special 

reason to think she is mistaken about one of the clue entries, without knowing which one. Or 

maybe somebody lied to her, telling her c7 was the answer. The case as stated does not specify. 

But assuming Sarah has in fact not solved the sudoku, neither of those explanations are 

required. If the Sarah were a classical agent, her choice of column 7 would reveal that she must 

either be confident in ¬⋂i ei or in c7, and must therefore be disposed to accept low betting odds 

on one or both of these propositions. But in actual fact, this need not be the case. So classical 

decision theory can only account for Sarah’s choice of column by distorting other aspects of her 

behavioural dispositions. This matches the general pattern we have seen in all our case studies: 

the classical story may have a way to account for each individual choice, but fails to capture the 

overall behavioural pattern. 

Still more tellingly, the classical treatment of credences entails that Sarah’s uncertainty about c3 

is essentially connected to her uncertainty about the clue entries. If that were true, Sarah could 

increase her confidence in c3 simply by refreshing her memory of the clue entries ei. Thus the 

classical view predicts that finding the solution to a sudoku is a matter of memorising its clues 

by heart. But anyone who has ever got stuck on a logic puzzle knows that in fact this is not how 

it works.

It is different in the paradoxical preface case. The professor’s confidence that her book contains 

a mistake is directly connected to her uncertainty about its individual claims. At least in 

principle, addressing her doubts about each and every one should eventually lead her to doubt 

whether there really is a mistake. Conversely, if she finds evidence showing p639 to be false, then 
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that discovery will bolster her confidence in ¬⋂ i pi. So her beliefs about the conjunction and the 

conjuncts are connected in a way that Sarah’s credences about c3 and the entries ei are not. 

Because the professor’s attitudes are linked in this way, they can still plausibly be viewed as 

aspects of a single, overall world view, as the classical picture demands. Sometimes it is claimed 

that the preface paradox and related examples show that the classical picture allows for doxastic 

inconsistencies and failures of deductive closure (Kyburg 1970, Hawthorne 2009; cf. Leitgeb 

2014). That might be true in some sense, but this is not the sort of deductive closure violation 

that interest us here.

By contrast, Sarah’s credences are disconnected. The classical account (3.1-3) demands that 

Sarah’s confidence about the clue entries ei and her credences in c3 should linked in a way that 

respects the entailment relation that holds between them. But Sarah’s credences are not linked 

in this way, because she does not see the logical connection between these propositions. Even in 

its probabilistic incarnation, the classical view rules out this kind of cognitive disconnect. So 

SILENT SUDOKA, on the most natural interpretation, demonstrates a very different kind of closure 

failure than the preface paradox. Deductive failures of that kind are every bit as much at odds 

with the classical picture as the other phenomena adduced in this dissertation.

3.3  Inquisitive Uncertainty 

Now for the inquisitive account of partial belief. Like an inquisitive belief state, an inquisitive 

probability has a domain of questions; it assigns probability values to every quizposition about 

a question in its domain:
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Let 𝒟Pr be a non-empty set of partition questions closed under parthood. Then an 

inquisitive probability on 𝒟Pr is a function Pr: 𝒬(𝒟Pr) → [0, 1] from quizpositions 

about questions in 𝒟Pr to the unit interval, such that for any Q, R ∈ 𝒟Pr : 

i) Normalisation: Pr(QQ) = 1 

ii) Additivity: If Q contains R, AQ and BR are inconsistent, and C = A ∪ QB, then 

Pr(CQ)  =  Pr(AQ) + Pr(BR). (3.6)

 Recall that by definition (2.7) above, QB =df { (q ∩ b)  : q ∈  Q and b ∈  B }\{Ø}. The notation 

“𝒬(𝒟Pr)” represents the space of all quizpositions AQ such that Q ∈ 𝒟Pr.  Note that, within any 22

given question Q ∈ 𝒟Pr, the probabilities Pr(AQ) are just like a classical probability, because we 

have both normalisation Pr(QQ) = 1, and additivity: Pr(A ∪ B)Q   =   Pr(AQ) + Pr(BQ) whenever 

A, B ⊆  Q are disjoint. Call this subprobability Pr’s probabilistic view about Q. Whenever R is 

part of Q ∈ 𝒟Pr, Pr’s probabilisitic view on Q settles its probabilisitic view on R: the probability 

of every quizposition about R is equal to the probability of the intensionally equivalent 

quizposition about Q. To see this, note that if AQ and BR are intensionally equivalent, then by 

(ii), Pr(AQ) = Pr(⊥Q) + Pr(BR) = Pr(BR), since Pr(⊥Q) = 0.

It follows that probabilistic views on overlapping questions must agree on the overlapping part. 

Just like outright, full beliefs, the partial beliefs of an inquisitive agent are constitutively linked 

through their thematic connections, forming a web of credences. In general, the more questions 

its domain 𝒟Pr contains, the better integrated Pr’s probabilistic views are. And at the limit, 

 Geeky side-note: the spaces 𝒬(𝒟) of quizpositions on a domain 𝒟 are technically identical to the 22

incoherent information state on the corresponding domain 𝒟. Likewise, classical probabilities are defined 

on 𝒫(𝒲), which is the inconsistent classical information state.
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where 𝒟Pr is the space of all partition questions, Pr reduces to a classical probability.

Adapting the classical definition in the natural way, we get the following inquisitive notion of 

expected value:

Let Pr be an inquisitive probability, let ∆ be a choice raising a question Q ∈ 𝒟Pr, and 

let a be an option in ∆. Then a’s expected value given Pr is 

EPr(a)  :=  Σq ∈ Q Pr( { q }Q
 ) · a(q) (3.7)

To check that this is well-defined, we need to establish that when two questions Q and R 

address the same choice ∆, they both yield the same expected value for every option in ∆. To see 

this, recall from §2.11 that whenever Q and R address ∆, they always share a part S that 

addresses ∆. Using inquisitive additivity, we can then see that for any option a ∈ ∆, 

Σq ∈ Q Pr({ q }Q) · a(q)   =   Σs ∈ S Pr({ s }S) · a(s)   =   Σr ∈ R Pr({ r }R) · a(r). 

Thus an inquisitive probability Pr yields an unambiguous assignment of expected values to the 

options of any decision problem that raises a question in 𝒟Pr. And that allows us to state the 

inquisitive view of credences in the following way:

Inquisitive Credences. An agent’s credences form an inquisitive probability Cr, 

manifesting themselves in a disposition to perform actions that maximise expected 

utility with respect to Cr in any decision situation that raises a question in 𝒟Cr. (3.8)

Just as in the classical case, we can show that (3.8) entails the inquisitive views of belief 

states  (2.12) and of individual beliefs (1.12), provided that credence 1 is interpreted as an 
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outright belief.  There is an analogue in the converse direction as well. Given suitable 23

assumptions, and given an interpretation of the inquisitive view of individual beliefs (1.12) 

according to which it covers composite choices, it can be shown that any agent with at least one 

inquisitive belief in the sense of (1.12) must maximise expected utility with respect to some 

inquisitive utility. One of the main aims of Chapter 4 is to prove this claim, theorem 4.18.

Since the inquisitive view of credences (3.8) incorporates the inquisitive view of belief states 

(2.12), it is clear in advance that (3.8) also has the resources to explain what is going on in the 

various problem cases we discussed. But to get a better sense of how the theory works, it may 

be helpful run through them all the same, beginning with the MITTEN STATE MURDER cases. 

It follows directly from (3.6)’s Additivity that parts are always more likely than the whole. This is 

the probabilistic analogue of closure under parthood. But it is compatible with (3.6) that some 

entailments should be less likely than the entailing proposition –– that is the probabilistic 

analogue to failure of closure under entailment. So since the questions M, the number of Michigan 

murders and D, the number of Detroit murders, are disjoint, Mandy’s credences about those two 

questions are in principle independent. In particular, Mandy could have high credence in the 

 Proof. For the reasons explained in §3.1 above, (3.8) associates the same disposition with credence 1 as 23

(1.12) does with full belief. Now let Cr be any inquisitive credence and let 
B   :=   { AQ : Cr (AQ) = 1 }. 

Since Cr(⊥Q) = 0 ≠ 1, B is coherent. It follows from Additivity that Cr(AQ) = Cr(A¬BQ) + Cr(BR) ≥ Cr(BR) 
when BR is part of AQ, whence B is closed under parthood. Now suppose Cr(AQ) = Cr(BR) = 1 and R is part of 
Q. Then Cr(A¬BQ)  ≤  Cr(Q¬BQ) = Cr(¬BR) = 0. So by Additivity, Cr(ABQ) = Cr(AQ) – Cr(A¬BQ) = 1 – 0 = 1. 
Thus B also satisfies partial closure under conjunction, making B an inquisitive belief state. Hence, if we 
identify credence 1 with belief, (3.8) entails both (2.12) and (1.12).
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proposition Detroit has more than 150 murders while simultaneously having arbitrarily high 

credence  that Michigan has less than 150 murders. Furthermore, she can adjust either view 

without affecting the other at all. On the classical theory, the entailments involved produce a 

necessary connection between Mandy’s credences about these two topics. There are no such 

necessary connections given the inquisitive theory, unless her credences about these two 

questions happen to be integrated in some larger view.

The same basic features of the inquisitive account allow us to handle the SILENT SUDOKA. There 

are a hundred different ways in which Sarah might memorise the clue entries. One natural way 

to do it is to memorise, for each 3×3 block, the answers to What pattern do the clues in this block 

form? and In order, what numbers are clued in this block? If Sarah makes sure she has high credence 

in the complete answers to those 18 questions, it will allow her to reproduce all the clues. But 

since none of these questions overlap with the question In which column does the 4th row “4” go, 

doing so will not itself affect her credences about that issue. This way, the inquisitive model can 

explain why the best Sarah can do is to venture a random guess about the column, in spite of 

the fact that she has all the necessary information to infer the correct answer.

Let us now ask a different question: how might Sarah go about finding out in which column the 

“4” goes? We saw that the classical picture suggested a bizarre approach: simply memorise all 

the clue entries until you are almost certain of each one. Once you are done with that, the 

answer should simply jump out at you. Does the inquisitive picture suggest a better strategy? In 

theory, one possibility would be to bring all the clues to bear on the question What is the 

distribution of numbers in the grid. If Sarah managed to accomplish this, she would basically be 
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like the classical agent, and see the solution instantly. However, that strategy is not feasible in 

this case. As discussed in §2.7, one pays a significant cognitive price for maintaining views on 

large questions, which require a high level of integration. This particular question has 2·1077 

cells. Obtaining a view on it would require cosmic levels of computational power, and is a 

merely theoretical possibility.

Thankfully, the inquisitive picture also suggests some strategies that do not require superhuman 

levels of intelligence. Sarah can try to construct inquisitive daisy-chains of views of the kind 

discussed in §2.6-10, with the aim of linking the views she started with to her target question. 

Doing so will involve forming views on a long series of strategically posed questions. As she 

moves down the chain, she may forget some views after they have served their purpose, 

preserving only the conclusions. During this deductive process, Sarah’s views about different 

corners of the puzzle continuously evolve, standing in shifting mereological relations to one 

another. It need never happen that Sarah oversees the whole long chain of inferences that leads 

from the clue entries to the controversial “4”. 

This is just a bare sketch of how the sudoku solving might be modelled on the inquisitive 

picture; a more detailed treatment would go into specifics about the information states 

traversed and the questions posed. But I hope I have said enough to convey the basic idea, and I 

hope that the emergent picture of the deductive process looks recognisable. It certainly seems to 

resemble real-world puzzle solving strategies a great deal better than the bizarre memorisation 

strategy suggested by the classical picture.
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Finally, I want to have another look at the old recognition/recall cases, which bring out an 

important contrast between inquisitive and classical decision theory. The basic thought is the 

same as it always was. In ROMEO RECALL, Juliet gives high credence to the quizposition Romeo’s 

number ends in -6300, but not to Romeo’s number ends in -6300. In TRIVIAL TROUBLE, Tom gives 

high credence to the quizposition “dreamt" ends in -MT, but not to the quizposition “dreamt" 

ends in -MT. But just what are Juliet and Tom’s attitudes to the second quizposition? It is not like 

they are certain it is false, either, or that they reckon it is an even bet.

In fact, (3.8) dictates a particular answer. Given that we do not want to say that Tom has high 

credence that “dreamt" ends in -MT, we must say he lacks a credence about that quizposition 

altogether. The reason is that, whenever an inquisitive probability is defined over two 

intensionally equivalent quizpositions, it always assigns them equal probability. For suppose 

some questions Q, R ∈ 𝒟Pr have intensionally equivalent answers AQ and BR. Say p = ⋃A = ⋃B. 

Then Q and R overlap at least on the polar question P = { p, ¬p }. It follows that 

Pr(AQ)   =   Pr(BR)   =   Pr({ p }P).

So on the inquisitive account of his behaviour, Tom has no view on the question Which English 

words end in -MT; likewise, Juliet has no view on the question What are the last four digits of 

Romeo’s number. This is supposed to explain why these agents, when confronted with those 

questions, are unable to respond appropriately. Intuitively, the absence of a view to guide their 

decision is a pretty satisfactory explanation for their behaviour. 

However, from a more theoretical standpoint, something is missing here. With the exception of 
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ties, classical decision theory makes a prediction about the agent’s response to every decision 

situation: a classical probability assigns expected values to all the options of every choice. But 

an inquisitive probability only returns expected values when the choice raises a question in its 

domain. So formally speaking, inquisitive decision theory, in the form of (3.8), makes no 

predictions at all about agents’ choices when facing a question on which they have no view. In 

particular, it does not make a positive prediction about what Tom and Juliet will do in these 

situations.

3.4  Deliberation 

Thus inquisitive decision theory has a problem that does not arise for the classical theory: how 

do agents respond to new questions, on which they do not have any view at all? For all (3.8) 

says, Tom’s response to the decision problem ∆Sphinx on p. 29 could be anything at all, given that 

he has no view on the question the sphinx asks him. This suggests the replies “carrot” and 

“elephant” would be equally in accord with Tom’s mental state as the reply “I don’t know”. But 

clearly, that is not right. There is an obvious, belief-based explanation for why Tom did not reply 

“elephant”: Tom knows “elephant” ends in -NT, not on -MT. And he does not want to 

embarrass himself by suggesting otherwise. In this section, I show that on a more careful 

analysis, it turns out that inquisitive decision theory can in fact underwrite this explanation. 

This is thanks to the fact that the thought process by which Tom arrived at this choice can itself 

be viewed as consisting of a series of simpler choices.

On the inquisitive picture, a course of action can sometimes be described as the product of 
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rational and belief-guided decision-making, but only when it is viewed as a sequence of choices 

rather than a single choice. One example of such a course of action came up several times in this 

chapter already: filling in a sudoku grid with the aim of arriving at the correct solution. In doing 

so, you in effect select one of a gazillion possible options of putting numbers in the grid. This is 

a hugely complex decision-problem, raising the vast question What is the distribution of numbers 

in the grid. But your response to that decision problem is not based on an antecedent view about 

that question: for the reasons discussed, it is not humanly possible to have such a view. 

Nonetheless, we can understand your course of action as belief-guided and rational if we split it 

up into parts. Rather than being the product of a single atomic choice, the way you filled in the 

sudoku is the product of a complex deliberative process that is at each stage guided by your 

beliefs on smaller questions. Analogous points can be made about Rubik’s cube example in §2.7.

In general, complex choices tend to be composed of smaller, simpler ones. Walking to work, you 

do not need to decide the entire route when leaving home: you can take it one turn at a time. 

Writing a poem, you need not decide on the entire text before putting your pen to the paper: 

you can write it one line at a time. Or take the biggest decision problem of all, How to live? 

Classical decision theory suggests you could just pick a hyperplan in infancy and stick with it 

for the rest of your life. The inquisitive picture explains why this is not what we do: the question 

involved is far too complex for our finite minds. We must instead live life one choice at a time. 

The smaller choices of which larger choices are composed typically raise smaller questions 

about which one can more easily have beliefs. If inquisitive decision theory succeeds in correctly 

predicting the agent’s move at every turn, I contend it succeeds in explaining the behaviour 

successfully: no need to cut corners by trying to do it in one go.
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Let’s first see how this perspective helps with ROMEO RECALL. I pointed out that in the phone 

booth, having dialled the first six digits of Romeo’s number, Juliet faces a question on which she 

has no view: What are the last four digits. But she is also, simultaneously, in a different, simpler 

decision problem, which raises a simpler question: namely the problem of dialling the next 

digit. Perhaps she does have a view on the question that problem raises, what is the seventh digit 

of Romeo’s number. Supposing the view divides her credences equally between the ten 

possibilities, we can simply explain her action (leaving the phone booth, say), as being based on 

her uncertainty about the seventh digit. 

What if Juliet does not have an antecedent view on what the seventh digit of Romeo’s number is 

either? Well, a view on this smallish question can at least be acquired at relatively moderate 

cognitive cost. So in that case we might say that Juliet first did some thinking, then concluded 

she was unsure about the next digit, then decided to leave the phone booth. Her decision to do 

some thinking can itself also be understood as a response to a decision situation, in which she 

had a choice between giving up right away and thinking it over. On the classical picture, there 

would be no point in thinking it over: if Juliet had the relevant information, she would have it 

immediately available. But the inquisitive picture makes sense of the possibility she might have 

the information, without its being immediately present to mind. Thus it makes sense of Juliet’s 

reasonable expectation that racking her brain might yield the answer she seeks. We can thus 

account for Juliet’s metacognitive decision to do so as a regular inquisitive belief-guided choice. 

Thus we can recast what appeared like a response to a question on which Juliet has no view as a 

series of responses to simpler questions, each one of which is guided by Juliet’s beliefs at the 

time of the choice.
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Juliet’s decision to think about the question she faces before responding is an example of a kind 

of default choice we make very frequently. Compare it to the default expectation in conversation 

that interlocutors ought to think about the questions they are asked before replying. Suppose 

someone asks you What day of the week Judy’s birthday is. You have no view on the matter and 

have not considered the issue before. Rather than issuing a reply at random, you would 

ordinarily think about it for a second first. Having thought about it, you may find the answer to 

the question, or you may be unsure: either way you have now acquired a view on the matter. 

The explanation of your reply is based on the view you acquired after cogitation. But really the 

deliberative process involved making two choices: first a choice to think about the question, and 

then a choice of reply.

 

So the proposal is to view Juliet’s deliberative process as consisting of a series of decisions that 

is guided in part by her metacognitive beliefs. In psychology, this metacognitive view of 

deliberation is popular, and there is a lot of evidence for it: see e.g. Proust 2013, chs. 1, 2, 5. The 

energy and time one spends on a mental search like Juliet’s depends on the stakes, and on her 

confidence that she will arrive at an answer. It turns out human beings are good at making such 

estimates. Research on metamemory has shown that human subjects frequently have a certain 

“feeling of knowing” (FOK), and that this sensation is is a remarkably reliable indicator of the 

information that is in fact stored in memory (Hart 1965, Murray and Tiede 2008).

A proper treatment of Tom’s reply to the sphinx in TRIVIAL TROUBLE requires something a little 

more sophisticated, since the mental process was probably more interesting. Instead of 

conceiving of Tom’s options as his ultimate replies to the sphinx, conceive of these replies as the 
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potential end points of a mental quest to find an answer to the sphinx’s riddle. The aim is to 

explain his choices at each turn in the quest. At the start, Tom can decide to either search his 

memory for words end on -MT, or to give up right away and say “I don’t know”. What he does 

there depends on his confidence that the search will succeed. Unless Tom has very little faith in 

himself, he will at least give it a try. Let us say the first word that comes to mind is the word 

“tempt”. He now faces something like the following choice:

TABLE 7: TEMPTED?

Here C is the cost associated with continuing the search. Tom may not antecedently have a view 

on the three-partite question that this choice raises, but it is an easy deduction away. After all he 

does know how “tempt” is spelt, and so he has an answer to the binary question Does “tempt” 

end on -MT –– all he has to do is combine this with his metacognitive view on the chances of a 

successful search, and he is ready to make this choice. If he continues the search, he will after 

some time come up with another candidate, like “exempt”. At that point, he faces a similar 

decision problem again. Unless Tom hits upon the word “dreamt”, his credence that the search 

will be successful should go down with each cycle of the process. And if the sphinx is getting 

impatient, the cost C of a search goes up. Eventually, the expected value of continuing the 

search will turn negative, at which point (3.8) predicts Tom will give up.

 /tεmt/ ends in -MT 
 /tεmt/ ends in -MPT,

but search will succeed
 /tεmt/ ends in -MPT,

and search will fail

reply /tεmt/ l 1 –1 –1

continue search l 1 – C 1 – C – C

give up  l 0 0 0
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At every juncture of this process, Tom is responding to a question to which he has an answer at 

that time. His beliefs about spelling feed into the process, ensuring he will not give an answer 

that he knows to be wrong. In particular, this guarantees that he will not say “elephant” or 

“carrot”. Assuming his beliefs about spelling are true, there are in fact only two actions that can 

come out of this deliberative process given Tom’s starting point: either he answers “dreamt” or 

“I don’t know”. Which of those two replies he ends up giving remains indeterminate, since we 

are treating the outputs of each word search as more or less random. But that is as it should be: 

it is in fact unpredictable whether Tom will get lucky and stumble on the right word.

In redescribing Tom’s response to ∆Sphinx as the product of a series of smaller choices, I do not 

mean to suggest that the expected response to a decision problem can vary depending on how 

the decision is described. That would undermine the predictiveness of inquisitive decision 

theory. Rather, the possibility of dividing the deliberative process into smaller parts should 

make the theory more predictive, because it allows us extract predictions about cases on which 

the theory at first glance appears to be silent. Tom still counts as having made decision in ∆Sphinx. 

But since he did not have any views that addressed this decision problem, inquisitive decision 

theory does not directly yield a  prediction about that choice. Even in cases like that, the agent’s 

response can still be made intelligible using inquisitive decision theory, by appreciating that, in 

addition to being a response to ∆Sphinx, Tom’s reply was also the product of a sequence of smaller 

deliberative choices.
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3.5  The Atlas or the Web? 

Inquisitive decision theory incorporates insights from Adam Elga and Agustín Rayo’s 

fragmented decision theory and also from Seth Yalcin’s account of belief as a question-sensitive 

attitude (Elga and Rayo 2016, 2019, Yalcin 2018; see also Yalcin 2008, ch. 3, 2011, §5-8, and Yalcin 

2007, §7 on inquisitive credences). These are both fragmentation theories of belief, building on 

suggestions from Stalnaker 1984, 1999a and Lewis 1982. Other notable endorsements of views in 

the fragmentation tradition include Fagin and Halpern 1988, §6, Braddon-Mitchell and Jackson 

2007, Egan 2008, Greco 2015b, Kindermann, Borgoni and Onofri fc. In this section, I examine the 

similarities and differences between those fragmentation theories and the inquisitive theory of 

belief and action articulated over the past three chapters. In particular, I explain why I think the 

latter is not a fragmentation theory, except in the superficial sense that it invalidates general 

closure under conjunction. For simplicity, I will focus here on the comparison between 

inquisitive (full) belief states and fragmented belief states. But I take it that everything I say 

applies mutatis mutandis to fragmented credence states as well.

In Seth Yalcin’s helpful analogy, fragmentation theories hold that beliefs do not form a map but 

rather an atlas: a collection of maps. Instead of always steering by the same map, we change it 

up from time to time, steering sometimes by one map, and sometimes by another. Each map in 

the atlas represents a coherent view. But since the contents of distinct maps are in principle 

independent of one another, one map may contain blanks in regions where another map is 

richly detailed. The different maps can also contradict each other.
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On Stalnaker’s and Elga and Rayo’s version of this view, every map in the atlas is a map of the 

entire world. That is, according to their theory, a single agent is in multiple classical belief states 

or classical credence states at once. These belief states are separate from one another and can in 

principle vary independently: Stalnaker and Lewis call this compartmentalisation. In particular, 

that means that the various belief states of an agent can be inconsistent with each other. The 

agent counts as believing p just in case p is included in one of their belief states. Thus the theory 

invalidates closure under conjunction: an agent may believe p, and also q, but if p and q happen 

to be in separate fragments, they need not believe p ∩ q. But this version of the view does not 

invalidate closure under entailment: if an agent believes p, they believe everything p entails.

On Yalcin’s version of the view, each map in the atlas represents a different region of the world. 

Formally, each belief state is associated with a distinct partition question Q, and its contents are 

some Q-answer V.  The entire atlas can be represented as a partial function from questions to 24

answers. Yalcin’s belief states are similar to the inquisitive views from §2.5, in that the only 

entailments of V that the agent believes are the Q-answers A such that V ⊆ A ⊆ Q. Thus Yalcin’s 

fragmentation theory invalidates not only general closure under conjunction but also general 

closure under entailment. In addition, Yalcin’s proposal invalidates the analogues of closure 

under parthood and partial closure under conjunction, since he imposes no constraints on the 

relationship between believers’ views on different questions.

The similarities between these fragmentation accounts and inquisitive decision theory are pretty 

 I am omitting the superscript Qs here because in Yalcin’s theory, the objects of belief are still intensional 24

propositions, not quizpositions: the question answered is not part of the content of a belief.
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obvious. Inquisitive beliefs can contradict each other, but they cannot be contradictions. 

Inquisitive belief states invalidate conjunctive closure in cases where the conjuncts belong to 

distinct views, and invalidate closure under entailment where an agent’s information is not 

carried over from one view to the next. So the plurality of inquisitive views is playing a 

somewhat similar role to the plurality of belief states in fragmentation theories. At the same 

time, there are clear differences, even at the abstract, logical level. Unlike belief fragments, 

inquisitive views are not at all separate. There is no compartmentalisation. Inquisitive views 

overlap with one another and are constitutively tied together through their thematic 

connections. That is why inquisitive belief states are much more akin to a web than to an atlas 

with cleanly separated pages. According to fragmentation theories, an agent can in principle 

believe absolutely any combination of contingent propositions. On the inquisitive theory, for 

instance, agents cannot believe contradictories (that is, they cannot have two beliefs equivalent 

to one another’s negation).

There is a deeper reason for those differences. It is part of the core idea of fragmentation that 

one only uses only one map at a time. So a belief can be “on” or “off” depending on whether it 

is included in the fragment that happens to be in charge. But on the inquisitive picture, all our 

beliefs are always on. It is never the case that one view dictates our action at the exclusion of our 

other views, so that every choice we make is in principle guided by our doxastic state in its 

entirety. 

Sure, a belief AQ only manifests itself in choices that Q addresses. But that is not fragmentation. 

That just means that the belief only guides those choices on which it has a bearing, and where it 
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is relevant. Even on the classical view, my belief that Quito is the capital of Ecuador and my 

belief that Napoleon was short do not typically manifest themselves while I am mowing the 

lawn or choosing an ice cream flavour. Everyone agrees that beliefs only make a difference in 

situations where they are relevant. But the fragmentation story has it that a belief should have 

an effect on action only when it is both relevant and also “active,” that is part of the operative 

belief fragment. In opposition to this, the classical and inquisitive theories agree that our beliefs 

guide our choices whenever they are relevant. It is just that the inquisitive account employs a 

more sophisticated, hyperintensional notion of relevance.

This matters a great deal, because it goes to the heart of what we have been trying to preserve 

from the classical picture: namely its capacity to account for the robust and unifying role that 

beliefs play in explaining our actions. To bring this out, consider an example:

WILL OF THE WHIST. Will is a novice whist player. His five remaining cards are lying 

face down on the table in front of him (he can look at them whenever he likes; Will 

keeps them face down only to hide them from the other players). Will knows for 

sure that the top card is a trump card, but he does not quite remember what his 

other cards are. He really wants to play his trump card. But if he has any diamonds, 

he is obliged to follow suit instead. What will Will do?

Of course, what Will is going to do depends on his beliefs. If he is certain he has no diamonds, 

he will play his trump card. If he is certain he has diamonds, he will follow suit. If he is unsure, 

he will probably have a peek at his cards before playing.
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But what will he do if those things are all true at the same time, as the fragmentation picture 

allows? Let us examine this question from the perspective of the Elga/Rayo theory first. 

Suppose Will’s mental state comprises at least these four classical belief fragments:

‣ A belief state BF, which entails that Will has a three of diamonds and must follow suit.

‣ A belief state BT, saying that Will has no diamonds and is free to play the trump card.

‣ A belief state BL, which says Will has only one red card, but is neutral as to whether it is a 

five of diamonds or a five of hearts.

‣ A belief state BG, which is entirely comprised of third-personal geographical facts. It 

contains a lot of information about African countries and capitals, but nothing about the 

card game at all. It does not even include the proposition Will is playing a card game.

Classically, you would predict on the basis of BF that Will would Follow suit, on the basis of BT 

that he will play the Trump card and on the basis of BL that he will Look at his cards. It is not clear 

what the classical theory might predict on the basis of an exotic belief state like BG. But if BG 

really were his belief state, I imagine Will’s priorities would include figuring out where he is, 

why he is holding five pieces of cardboard and who all these people staring at him even are.

 

What can we predict about Will’s behaviour given that he is in this fragmented doxastic state? 

Well, nothing, really. Clearly he cannot be having all of these reactions at the same time. The 

best we can do is to say that Will’s action depends entirely on which belief state happens to be 

active. But absent an account of the conditions under which a belief state may be expected to 

become activated, that really is no help at all. Here is another way to think of it: the fact that the 

fragmentation account has an “explanation” ready for every action Will could possibly take, 
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shows that those purported explanations are at best incomplete.

Elga and Rayo offer a rather brute way to fill this explanatory gap. On their version of the 

account, each belief fragment is accompanied by an elicitation condition that specifies the 

circumstances under which it becomes active. Crucially, the elicitation conditions associated 

with distinct fragments are always mutually exclusive; thus they partition (some portion of) the 

space of decision situations. A list of the agent’s belief states does not yield behavioural 

predictions or explanations by itself. According to Elga and Rayo, the true explanans of an 

agent’s behaviour is their access table, which is a full specification of all the agent’s beliefs 

fragments together with their elicitation conditions.

So in Will’s case, we first need to work out which (if any) of Will’s belief states is elicited in the 

particular situation described. Only then will we have a prediction about his behaviour. 

Depending on the elicitation conditions associated with those four belief states, any of the 

reactions described is in principle possible. One complaint about this style of explanation is that 

the elicitation conditions do not really explain much. Rather than saying why a certain belief 

state was “elicited” on a particular occasion, the access table simply lists the occasions when the 

state is activated. If we are happy with explanations of that kind, why not just “explain” agents’ 

actions in terms of an action table, which specifies what action the agent undertakes in every 

situation they might encounter?

Elga and Rayo acknowledge the difficulty, and seek to address it by saying that “An access table 

is only explanatory when its elicitation conditions are construed sufficiently broadly.” (Elga and 
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Rayo 2019, p. 7). But even with broad elicitation conditions, the account does not vindicate the 

robustness of ordinary belief-based explanations of behaviour (see also Norby 2014). Suppose I 

ask you where the party is tomorrow night, and you tell me it will be on Rivington Street. What 

reason do you have to suppose I will act on this information tomorrow? I may believe it in my 

presently active fragment, but for all you know, and for all I know, a different fragment may 

activate tomorrow. And that fragment may not contain this information. Such a shift can 

happen even if I just have two belief fragments, both with broad elicitation conditions.

Are our belief-based explanations secretly buttressed by tacit assumptions about the 

circumstances under which the relevant beliefs are active? It would be curious that assumptions 

about elicitation conditions are never be made explicit, if they they play the pervasive role in 

cognition that Elga and Rayo say they do. It is also not clear how we are supposed to figure out 

the elicitation conditions of the beliefs we attribute to people. Suppose Will in fact plays the 

trump card. What does that tell us about the elicitation conditions of the belief BT? Nothing 

besides the fact that the condition was apparently met on this particular occasion. Any feature 

of the occasion could be responsible. Maybe BT was triggered because Will has exactly five cards 

left, or because diamonds are the leading suit, or because of the time of day, or because someone 

just used the word “subcutaneous” in conversation. Elga and Rayo do not constrain the nature 

of these elicitation conditions in any way. Absent such constraints, the theory leaves many of the 

belief-based inferences one would ordinarily make about Will radically unjustified.

Yalcin’s fragmentation theory faces an exactly parallel issue, but the involvement of questions  

does mitigate the severity of the problem. Suppose Will has the following views:
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‣ The view F, Fred and I have diamonds in response to Who has diamonds?

‣ The view T, I have only spades and hearts in response to What suits do I have?

‣ The view L, The bottom card is a five of hearts or diamonds in response to What is my bottom 

card?

‣ The view G, Addis Ababa is the capital of Ethiopia in response to What is the capital of 

Ethiopia?

Much as before, the first three views each suggest a different course of action (respectively to 

Follow suit, to play the Trump card and to Look at the cards), while G suggests no clear course of 

action at all. But this time, it seems somehow easier to predict which of these beliefs is more 

likely to steer the course on this particular occasion.

In his papers, Yalcin is not really concerned with the relationship between belief and action, so 

he does not address this difficulty. But if we employ the notion of facing a question developed 

above, we can say something on his behalf. It would be bizarre, for instance, for Will to look to 

his views about Ethiopia to guide him on this particular occasion. There is nothing that map 

could say that would address his dilemma. As I said before, in an Elga/Rayo atlas, every map is 

a map of the whole world. That means that a priori, any map in the atlas could in principle 

address your current navigation problem. By contrast, in a Yalcin atlas, different maps depict 

different regions. Different maps are therefore inherently appropriate for different occasions. So 

Yalcin’s theory suggests a natural explanation for why view G is not used on this occasion.

Will faces the question Do I have diamonds. Which of the three remaining maps should he consult 

to address this question? Should he ask What is my bottom card, Who has diamonds or What suits do 
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I have? Only answers to the latter two questions are bound to settle the issue, so those are the 

more natural views to look at. Thus we can rule out the view L: the issue what Will’s bottom card 

is could have a bearing on his decision, but it is clearly less salient for this particular choice.

So only F and T are left. Unfortunately that is still not enough to yield a prediction about what 

Will is going to do. For F and T pull different ways: on the basis of F you would expect Will to 

follow suit. But on the basis of T you would expect him to play the trump card. He cannot do 

both, so both views cannot possibly be “on” –– even though both are relevant on this occasion. 

For this reason, it looks like any systematic account tying Yalcin-style belief states to choices is 

still going to have to invoke elicitation conditions or something of the kind. For the same 

reasons as before, this is bound to undermine the force of ordinary belief-based inferences.

Inquisitive decision theory has no need for elicitation conditions. This is thanks to the constraint 

that agents’ outright and probabilisitic views must agree on overlapping questions. That means 

that whenever two views bear on the same decision situation, they will give the agent matching 

guidance on that choice, even in cases where the views are inconsistent (§2.11). In particular, a 

conflict like the one between F and T never arises for an inquisitive agent. The questions Who has 

diamonds? and What suits do I have? intersect. Consequently, for any inquisitive agent with views 

on both questions, the views will agree on the overlap: Do I have diamonds or not? This constraint 

gels with our pre-theoretic judgments in this case: it is intuitively plausible that the views F and 

T should form an impossible combination.

I should clarify that inquisitive decision theory does not preclude the possibility of a divided 
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mind in pathological cases, such as those involving split brain patients or people with delusions 

or dissociative identity disorder (Nagel 1971, Davies and Egan 2013). The inquisitive theorist is 

free to speculate that in such cases, multiple subagents co-exist within a single body, each with 

their own, separate inquisitive belief state. In fact, I am willing to go further than that. I am 

sympathetic to the thought that even in ordinary, healthy human beings there may be subagents 

whose beliefs are not identical to the beliefs of the organism of the whole. For instance, Tamar 

Gendler’s cases of alief suggest that a person’s intellectual faculties and their lower-level 

affective response systems can sometimes have directly opposing views (Gendler 2008). In the 

examples she gives, neither system has full control over the agents’ actions, and so it seems like 

the person as a whole need not share the beliefs of either subagent. Aristotle’s parts of the soul 

are a classical precedent for this sort of idea.

What I find misguided is the attempt to equate such phenomena with ordinary cases of memory 

and deductive failure. I think our natural inclination to posit a divided mind in these instances 

is due precisely to the fact that the attempt to provide an ordinary, unified belief-based 

explanation for the agent’s behaviour fails. It is instructive to reflect on the pathological cases, 

because they help clarify what true belief fragmentation is like. A telling characteristic that sets 

them apart is that there are always particular, physical actions that can be performed by one of 

the subagents but not the other. In split brain patients, the left hemisphere controls the right 

hand and the right hemisphere controls the left. With dissociative identity patients, the 

presenting identity usually has exclusive control over the person’s motor and verbal behaviour. 

And in the “alief” cases, only the intellectual part exercises direct control over verbal behaviour, 

and only the affective system has the ability to make the person tremble or sweat. 
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One important reason not to classify the inquisitive account of belief and credence as a 

fragmentation view is that we ought to reserve the term “fragmentation” for abnormal cases 

that exhibit this characteristic kind of disunity. These are the cases to which the term applies in 

the first instance, and to which it is best fitted. Insofar as this is a verbal dispute, it strikes me as 

a consequential one, because there is a value to having a word for that distinctive psychological 

phenomenon. Cases where a doxastic inconsistency is due to a failure to see the consequences of 

one’s beliefs just do not belong to this category.

For instance, in MITTEN STATE MURDERS II, there is no evidence of this kind of disunity in 

Mandy’s behaviour. It does not matter how Mandy is confronted with the question How many 

murders happened in Detroit. Whether it happens in conversation, or written down, or in some 

non-verbal context, Mandy’s response will be to perform whatever action makes sense given 

her view that there were 120, whether that be raising her left hand, raising her right hand, or 

giving some sort of verbal or written reply. This disposition is also stable over time (no less 

stable than the doxastic state itself, anyway). The same observation holds true for her view of 

the Michigan murder figure. Both views can in principle affect any action of Mandy in any 

domain. That is why we attribute both of these beliefs to Mandy and not to some subagent: they 

unify all of Mandy’s behavioural dispositions.

The contrast with fragmentation theories brings out what remained constant between 

inquisitive decision theory and the classical theory it is based on: namely the principle that all of 

an agent’s actions should make sense given the totality of their beliefs. The fragmentation 

picture arises when you start fiddling with this, making some of an agent’s choices answerable 
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to one subset of their beliefs, while admitting that other decisions only make sense relative to a 

different subset. This idea radically undermines the unifying power of ordinary belief-based 

explanations: even an agent with only two fragments cannot be relied upon to act tomorrow on 

what they learnt today. Thankfully, we do not have to make that painful sacrifice to avoid the 

distorting idealisations of the classical theory. 
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Chapter 4.
Representation Theorems

In Chapter 3, I mentioned that all of classical and inquisitive decision theory can in a sense be 

seen to follow from the classical and inquisitive views of individual beliefs respectively. To be a 

bit more precise, if an agent has inquisitive (classical) beliefs at all, it follows that they have a 

full inquisitive (classical) belief and credence state, and act on those beliefs and credences. In 

this chapter, I state and prove the formal results that underpin those claims. This takes the form 

of three representation theorems that can ground the attribution of doxastic states not only to 

highly idealised classical agents, but also to agents who behave in the sorts of non-classical 

ways that were highlighted in previous chapters.

I should warn any unwary readers that after some leisurely sections at the beginning, this 

chapter turns very technical towards the end. Since the concepts introduced will not be used in 

chapter 5, the reader could happily skip §4.3-6 on a first reading. Indeed, on any reading, the 

proofs in §4.6 will mostly hold appeal to those who, to use Stephen Yablo’s phrase, “are 

possessed by a powerful urge” (Yablo 2014, p. xi). 
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§4.1-2 explains the content of the three representation theorems, and explains why a more 

broadly applicable alternative to the classical representation theorems is desirable. §4.3-4 set up 

a formal framework for describing behavioural dispositions that can apply to any agent, no 

matter how irrational and erratic their behaviour. If we identify classical and inquisitive belief 

and credence with particular behavioural dispositions in this framework, this allows us to state 

the minimal rationality conditions on behaviour that are required for being a classical or an 

inquisitive agent. §4.5 specifies the dispositions associated with which classical and inquisitive 

doxastic states, and states the corresponding minimal rationality conditions. §4.6 supplies 

proofs for all the claims in §4.5.

4.1  Representation for Econs 

The formal results below concern the conditions an agent’s behaviour has to meet in order for 

classical or inquisitive decision theory to correctly characterise that behaviour. Or, on a different 

way of viewing the matter, you might say that these are the conditions under which it is 

appropriate to represent the agent as having a classical or an inquisitive doxastic state: hence 

the term “representation theorems”.

These requirements on behaviour are described in a way that does not itself make reference to 

the agent’s doxastic attitudes (except perhaps indirectly, as noted in §1.7). Unlike Savage’s 

famous representation theorems, the results below are only about ascribing beliefs and 

credences. They say nothing about the conditions under which we can ascribe utilities to agents. 

In the present formalism, the utilities are incorporated in the definition of a decision problem, 

146



and are taken as given in describing the agent’s behaviour. 

Ramsey’s representation theorem of 1926 is of this same broad type: he also takes the value of 

the rewards as a given, and then considers the circumstances under which credences can be 

ascribed.  Von Neumann and Morgenstern 1953, by contrast, pursued the opposite project: they 25

took credences/probabilities as given in their axioms and then provided conditions under 

which a utility can be ascribed.

For the classical case, we will prove the following representation theorem:

Classical Representation Theorem. An agent is classical if and only if they discern 

dominant options. (4.12)

The technical vocabulary used here will all be defined more precisely below, but roughly 

speaking, an agent is classical just in case they maximise expected utility with respect to a 

particular classical probability.  The theorem describes the conditions under which this is true: 

the agent must “discern dominant options”. This basically means that they will never make a 

series of bets that will lead to a guaranteed loss. In other words: discerning dominant options is 

being generally disposed to avoid Dutch books. One could paraphrase (4.12) as follows: An agent 

may be represented as guided by classical credences just in case they always avoid Dutch books. This 

makes theorem (4.12) very similar to the results often adduced in support of Bayesianism 

(compare for instance Ramsey 1926, Lehman 1955 and Hájek 2005).

 “Let us call the things a person ultimately desires ‘goods’ and let us at first assume that they are 25

numerically measurable and additive.” (Ramsey 1931 [1926], p. 173-4)  
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One reason to be interested in representation theorems is that they provide a way of grounding 

the attribution of doxastic states to agents. In particular, behaviouralists and functionalists look 

to characterise mental states in terms of behavioural dispositions. On the face of it, (4.12) gives 

them precisely what they need: it associates a precise set of behavioural dispositions with every 

possible classical credence function –– namely the disposition of maximising expected value 

with respect to that probability. If we are prepared to leave the justification for attributing a 

utility aside for now, this immediately yields a way to characterise credences that is acceptable 

to behaviourists: an agent’s credence state is just whichever classical probability the agent is 

disposed to maximise expected utility with respect to.

The trouble with this idea is that agents in the real world are not disposed to maximise expected 

utility with respect to any classical probability. As we saw in Chapters 1, 2 and 3, actual agents 

do not have classical behavioural dispositions at all. The reason, as anyone familiar with the 

literature on Dutch books is aware, is that complete immunity to Dutch books is an extremely 

high bar to clear: Dutch bookies are a crafty lot. Because of this, it does not look like (4.12) can 

ground the attribution of classical credences to ordinary agents after all.

A colourful way to make this point is to say that the classical representation theorem gives us a 

way to ground the attribution of credences to econs but not to humans. Econs are a fictional 

species who, unlike humans, behave in accordance with the laws of classical decision theory 

(see Thaler 2015, cf. Aumann 1987).  Of course, there are certain moves that can be made in an 26

 The Latin binomial for this species is homo economicus, or alternatively homo rationalis. A close cousin of 26

the Econ is the Logon, a fictional believer whose doxastic and epistemic states obey the axioms of standard 
epistemic logic (Solaki, Berto and Smets 2019).
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attempt to rescue this project. Sure, we may not be exactly like the econs, but at least it seems 

that we at some level aspire to achieve their level of coherence. Perhaps that makes us similar 

enough to econs to justify attributing classical credences to us “by extension” so to speak.

I do not object to this move in principle. When theorising, a certain amount idealisation is 

usually inevitable, and psychology is no exception to the rule. But I do think there are limits to 

how far it can be taken. For on the face of it, we are not similar to econs at all. Econs are 

perfectly consistent masterminds with unbounded computational resources. An econ can solve 

a Rubik’s cube or factorise a twenty-digit integer in an instant. They are so clever they never 

have a need to think something through or deliberate. They instantly bring all relevant 

knowledge to bear on any practical issue they confront. They never have the experience of 

failing to reproduce a word or name that is on the tip of their tongue. 

Human beings are not like that at all. And even if we aspire to the ideal that econs represent, 

our computational limitations mean that it is very far beyond our grasp. Moreover, it appears 

that those same limitations engender fundamental, structural dissimilarities between human 

and econ beliefs. In particular, humans have a lot of inconsistent beliefs, and we fail to see many 

of the consequences of our beliefs. So why suppose that human doxastic states resemble the 

doxastic states of econs at all?

 

An analogous complaint can be lodged about all the other classical representation theorems, like 

Ramsey 1926, Von Neumann and Morgenstern 1953, Savage 1972 and Bolker 1966/Bradley 

1998/Joyce 1999. All of these theorems assume behaviour is constrained in ways that, by these 
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authors’ own admission, fail to apply to real-world behaviour. If the axioms of all these theories 

described real-life human or animal behaviour, the import and application of these results 

would be less mysterious. But as it stands, it is difficult to see just what the significance of these 

results is supposed to be.

Of course it is no coincidence that all those different axiomatic systems have to make similarly 

unrealistic  assumptions. Save a few subtle differences, they are basically ways of describing the 

same classical pattern of betting behaviour from slightly different angles. And it does not matter 

what axioms you use to describe this behaviour: as long as the axioms succeed in capturing 

classical, expected-utility-maximising behaviour, they must be just as far removed from reality 

as the classical behaviour itself.

4.2  Representation for the Rest of Us 

If we want to overcome this shortcoming of the classical theorem, and prove a result that can 

ground the attribution of attitudes to a wider class of agents, we need to start by expanding the 

space of potential agential attitudes beyond classical probability/utility pairs: all the classical 

states are already matched to possible Econ behaviours. Once the new attitudes are associated 

with behavioural dispositions in a precise way, we can investigate the conditions under which 

we can attribute an attitude from the broader class. This will then yield a generalisation of the 

classical representation theorem. Since there are more attitudes to go around, these conditions 

are bound to be weaker, and thus the theorem applies to a wider class of possible agents. The 
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hope is that this wider class will include agents that are more like ourselves: representation for 

the rest of us. Notably, formal results of this kind have been established for non-additive 

(Choquet) theories of credence (Gilboa 1987 and Schmeidler 1989), and also for “cumulative” 

prospect theory (Tversky and Kahneman 1990; for more see Elliott 2015, §2.4, App. B). In this 

chapter, we will establish such a result for inquisitive decision theory.

In previous chapters, I have tried to show that the application of inquisitive decision theory to 

ordinary agents requires a great deal less idealisation and introduces much less distortion than 

classical decision theory does (even if it still requires some measure of idealisation). The 

inquisitive representation theorem is a reflection of this:

Inquisitive Representation Theorem. An agent is inquisitive if and only if they 

discern better outcomes. (4.18)

Again, this new terminology will be defined more sharply below, but roughly speaking, an 

agent is inquisitive just in case they maximise expected utility with respect to an inquisitive 

probability. To discern better outcomes means to pick the superior option when faced with two 

constant choices, which comes down to a choice between outcomes (a constant choice is a choice 

that would yield the same outcome relative to every possible world). For instance, when given a 

choice between a thousand and two thousand dollars, an agent who discerns better outcomes 

will pick two thousand dollars, assuming they want to maximise monetary gain. Given a choice 

between burning a hundred dollar bill and not doing so, they pick the latter. Failing to discern 

better outcomes would be to wilfully select the raspberry ice-cream over mango ice-cream, with 

the goal of getting the mango ice-cream. 
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As these examples bring out, discerning better outcomes is a weak rationality constraint. It is 

nothing like avoiding Dutch bookies. One could even go so far as to argue that it is not really a 

constraint at all, but something that agents analytically have to satisfy. After all, is it not part of 

what we mean by saying that your goal is mango ice-cream that you do not wilfully avoid 

mango ice-cream, but get it when it is on offer? Here is a different way to make this point. 

Formally, the theory represents outcomes by their utility values. And you might think that if an 

agent’s utility assigns one outcome a higher value than another, that just entails that the agent is 

disposed to pick the higher-valued outcome. This is part of what it means for one outcome to 

have higher utility than the other. On this view, the condition of discerning better outcomes is 

trivially satisfied, which means (4.18) in fact tells us that every agent, no matter how irrational, 

is an inquisitive agent.

Personally, I think that would be over-egging the cake a bit. Even if it is granted that there is 

some analytic connection between an outcome’s having high utility and the disposition to pick 

that outcome, it still seems implausible that it is an analytic truth that our preferences between 

outcomes are representable by a utility function at all. An irrational person might have circular 

preferences, for instance. Or the proportionality could be off somehow: someone might for 

example find A and B to be twice as desirable as C, while also finding A to be twice as desirable 

as B. However, it is true that the assumption that an agent discerns better outcomes does not go 

beyond the assumption that in the context of any decision situation there is a real-valued utility 

function that faithfully represent the agent’s conative attitudes towards the outcoms. That is a 

pretty basic assumption of the theoretical framework we have been using, and one with a good 

pedigree –– it exactly mirrors Ramsey’s assumption cited above. While this assumption is not 
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empty, it is very weak next to the classical assumption of immunity to Dutch books. Moreover, it 

is a simplifying assumption about desire, not belief, and therefore much less worrisome for 

present purposes.

That means that the inquisitive representation theorem applies not only to econs but to a vastly 

larger class of agents with potentially far less systematic behavioural dispositions. As I have 

argued in previous chapters, these inquisitive agents include creatures much more like 

ourselves, who are terrible at Rubik’s cubes and prime factorisation, and for whom deduction 

and memory retrieval take effort. So from the perspective of the project of leveraging a 

representation theorem to ground the attribution of credences to ordinary people, the 

inquisitive representation theorem seems like a much more promising starting point than the 

classical one.

At this point, someone might cry foul: how can I claim, on the one hand, that inquisitive 

decision theory puts barely any constraints on behavioural dispositions, while also maintaining, 

on the other hand, that the theory explains and predicts our behaviour? Surely the only way the 

theory can give a substantive explanation of behaviour is by making some claims that constrain 

this behaviour. You can’t get something out of nothing! Has there been a sleight of hand?

Well, not exactly. If an agent discerns better outcomes, that only guarantees that they must have 

some inquisitive beliefs. At a minimum, they must believe the trivial quizposition { 𝒲 } { 𝒲 } –– 

Yablo calls this quizposition Whatever. Suppose that Whatever is the only belief the agent has. 

Well, then inquisitive decision theory makes no predictions about their behaviour beyond the 
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fact that they will pick the better outcome when given a choice. So it is true that you do not get 

anything out of nothing.

Inquisitive decision theory only begins generating more substantial predictions and 

explanations once we look at agents who have beliefs about non-trivial questions. In fact, as 

described in §3.4 above, the more questions an agent has answers to, the more predictable their 

behaviour becomes. But at the same time, every question corresponds to an additional 

coherence constraint on the agent’s behavioural dispositions. The more questions an agent 

answers, the more rational and cohesive the agent’s beliefs and actions become (compare 

§2.5-6). In the limit, if an agent is so coherent that they have views on every question, their 

doxastic state determines their behaviour in every decision situation, except when there is a tie 

in the expected utilities. Only econs meet that threshold. To apply inquisitive decision theory to 

a human agents, we must make the plausible assumption that, to a good approximation, their 

behavioural dispositions lie somewhere between those of the completely chaotic, unpredictable 

Whatever agent and the perfectly coherent econ.

The following result captures this broader picture:

General Representation Theorem. An agent maximises inquisitive expected utility 

when faced with a question Q if and only if they discern dominant Q‑options. (4.20)

Let’s say a Dutch Q-book is a Dutch book with the feature that if you conjoin the questions raised 

by each bet in the series, that conjunction is part of Q. Informally, for an agent to discern 

dominant Q‑options is for them to avoid all Dutch Q-books. Especially for small questions Q, 
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avoiding Q-books is a great deal easier than avoiding Dutch books in general. That is because 

the restriction to Q‑books significantly restricts the bag of tricks a Dutch bookie has at their 

disposal. For example, the only way you can get Dutch P‑booked on a polar question P is to bet 

both for and against one and the same proposition. As the question Q gets bigger, the Q‑books 

get trickier and the condition of avoiding them becomes increasingly demanding.

Both the classical and inquisitive representation theorems are easy consequences of the general 

representation theorem. An agent who discerns dominant options avoids Q‑books for all 

questions Q. So they have credences about every question and maximise expected utility no 

matter what question they are faced with: these are econs or classical agents. Agents who only 

discern better outcomes discern dominant { 𝒲 }‑options, and so they have inquisitive credences 

about at least one question and maximise expected utility when confronted with any question 

they have views about: they are inquisitive agents.

The picture evoked by the general representation theorem is that of a spectrum of increasingly 

“discerning” agents. The more dominant options they discern, the more rational they are, and 

the more predictable their behaviour. At one extreme, there are agents who do not avoid Dutch 

Q‑books for any Q. Such agents are so unpredictable and erratic that they cannot even be 

assigned an inquisitive credence. At the other extreme, there are agents who avoid all Dutch 

books –– they have an inquisitive credence that is defined on every question, which is just a 

classical credence: those are the perfectly systematic econs. And the rest of us? Well, we are 

somewhere in the middle.
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4.3  Compound Decisions 

We will be interested in situations where agents have to make a number of choices, either 

simultaneously or in short succession, where both the actions and the outcomes of the 

individual choices are independent of one another. What makes those situations interesting is 

that the agent can be viewed either as making two component choices or a single overarching 

compound choice. In §2.2 and §2.11 above, we already made reference to such compound 

choices, but for present purposes we will need a more systematic treatment.

As an example, consider Julie, who has to decide what clothes to put on for her long mid-April 

hike in the English countryside. She has two decisions to make: whether to bring her hat or not, 

and whether to bring a big warm coat or a lighter jacket. She really likes wearing her hat, but 

she would prefer for it not to get wet. And she prefers a big warm coat over a light jacket just in 

case it’s going to be cold. Below, table 8 and 9 on the left represent these two decision problems, 

with p representing the possibility of pouring rain, and q the possibility that it will be quite 

cold. Table 10 on the right presents the same decision situation a different way, as a choice 

between four different outfits whose payoff depends on the overall weather conditions.

  p ¬p  q ¬q  pq p¬q ¬pq ¬p¬q 

k 1 4 m       4  2 k + m 5 3  8  6

l 3 2 n 2  4 k + n 3 5  6  8

l + m 7 5  6  4

l + n 5 7  4  6

TABLES 8-10: A COMPOUND DECISION
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This compound decision problem can be computed from the smaller problems using a simple 

operation:

The sum of two decision problems Γ and ∆ is the following the decision problem:

Γ + ∆ =df { a + b  :  a ∈ Γ, b ∈ ∆ }

where “a + b” denotes the option c such that  c(w)  =  a(w) + b(w)  for all w ∈ 𝒲.

(4.1)

Julie will make the decision { k, l } + { m, n } in virtue of making decisions { k, l } and { m, n } 

simultaneously. But it is important to stress that is not in general true that deciding Γ and also 

deciding ∆ entails deciding Γ + ∆. If that were so, there would be no difference between a bet 

and a repeated bet: deciding { x, y } would amount to deciding { x, y } + { x, y } = { x + x,  x + y,  

y + y }. Julie faces the sum of { k, l } and { m, n } because her two decisions are completely 

independent of one another: the outcome of each choice does not affect the outcome of the other, 

and what she chooses in one problem does not constrain what she chooses in the other. Only if 

an agent simultaneously makes two independent choices Γ and ∆ does it follow that they are 

also making the choice represented by the sum of these problems Γ + ∆.

Conversely, deciding the sum Γ + ∆ also does not entail deciding Γ or ∆. Deciding Γ and ∆ 

simultaneously and independently is one way to decide Γ + ∆, but it is not the only way. For 

instance, Becky the financier faces the problem { k, l } + { m, n } displayed in in table 10 if she has 

a forced choice between four complex agricultural investments I, II, III and IV, whose respective 

financial returns she knows to depend on the April weather conditions in the manner indicated 

in the table. But Becky’s choice is not, it seems, composed of a choice between making investment 
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I or II and investment III or IV on the one hand, and a choice between making investment I or III 

and making investment II or IV on the other. 

For one, that unnatural division presupposes a plenitudinous metaphysics of actions with an 

unusual tolerance for disjunctive actions. But even if we were to grant that the choice can be 

split into these two strange components, whether the first of these is an instance of { k, l } still 

depends on how the credit for the overall profits is to be split between the component choices. 

And it turns out that no matter how we answer that question, there are counterexamples to the 

thesis that deciding Γ + ∆ entails deciding Γ.

Let us say for instance that Becky chooses investment III and gets a return of seven grand, 

because it rains and is quite cold. How much of that return is due to her choice of investment III 

or IV over investment I or II and how much of it is due to her choice of investment I or III over 

investment II or IV? Suppose for the sake of argument that there is a principled answer to that 

question. I will even grant the division turns out to be three grand to the former and four grand 

to the latter. In fact let us grant that all entries in the table are split in such a way that the first 

choice does instantiate the decision problem { k, l }. Then there would still be a counterexample 

to the thesis that facing Γ + ∆ entails facing Γ. For note that 

{ k, l } + { m, n } = { k + 1, l + 1 } + { m – 1, n – 1 }

But given what we’ve just granted, Becky does not face { k + 1, l + 1 } or { m – 1, n – 1 } in spite of 

facing their sum. And that is not the only counterexample: take any option x, and the following 

holds true: { k, l } + { m, n } = { k + x, l + x } + { m – x, n – x }.
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4.4  Agential States 

We also need a formal way of capturing the way an agent is disposed to respond to decision 

problems. The basic approach we will take here is to codify an agent’s dispositions as a function 

that can take in any decision problem as an input and returns the way the agent is disposed to 

respond to that problem as its output. In principle, any agent whatsoever should have a 

dispositional profile of this kind, no matter how irrational and erratic their behaviour might be.

You might have thought that this function will represent an agent’s response to a problem ∆ as a 

particular option in ∆: whatever option the agent is disposed to choose in the situation ∆. But on 

reflection, that is too simplistic. There need not be any one option the agent is disposed to 

choose. For instance, suppose a quiz show participant is choosing between a blue door and a 

red door, knowing that the prize is behind one of the doors. If they consider one door more 

probable than the other one, they will presumably be disposed to pick that door. But what if the 

agent considers both possibilities equally likely? Then they need not have a firm disposition to 

pick one over the other. 

To capture this possibility, we will in general want to characterise an agent’s disposition to 

respond to a given decision problem as a set of options, all of which an agent might, given their 

dispositions, choose when confronted with that problem. If an agent has no firm dispositions at 

all about how to respond to a problem ∆, the set in question will simply be all of ∆. Formally 

speaking, such a non-empty subset of the original decision problem is itself also a decision 
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problem. This leads to the following notion of an agential state:

An agential state is a function α from decision problems to decision problems 

satisfying the following three constraints for all Γ, ∆:

i) Ø  ⊂  α(∆)  ⊆  ∆

ii) If a ∉ α(∆), then α(∆) = α(∆\{a})

iii) (α(Γ) + α(∆))  ⊆  α(Γ + ∆)  

The options in ∆\α(∆) are the options the agent α rules out in ∆. The options in 

α(∆) are that α leaves open in ∆. (4.2)27

When referring to an agent as “α”, we will always call their agential state “α”, using the same 

lower-case Greek letter, but bold-faced. This notation might have been confusing if not for the 

fact that, since the agential state captures all the information we need about an agent, we need 

not pay much heed to the distinction between agents and their agential state. The motivation for 

constraint (i) in (3.3) is pretty clear: the agent must choose some option or other, so there always 

has to be at least one option compatible with their behavioural dispositions. And an agent can 

never choose an option they do not have. 

The intuition behind condition (ii) is that when you choose between options a, b, c, … z, where 

 If you agree with the view considered at the start of §4.2, that it is analytic that agents prefer higher-27

utility outcomes, then that would motivate the addition of a fourth condition to this definition:

iv)    For all x, y ∈ ℝ, if x < y then x  ∉  α({x , y} ∪ ∆)

Here x and y represent constant options with value x and y respectively (see §4.5.1). With this fourth 

condition in place, we would get a version of the inquisitive representation theorem according to which 

every agent whatsoever is an inquisitive agent.
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you rule out option a, you are in effect choosing between the remaining options b, c, … z. 

Removing a dispreferred option cannot make a difference for the agent’s choice, since in ruling 

out the option the agent removes it anyway. This is essentially a weakening of the principle of 

Independence of Irrelevant Alternatives (IIA), which says that adding new options cannot affect an 

agent’s preferences with respect to the old options.

The reason to resist endorsing a stronger version IIA is to allow for the possibility that a 

plentitude of options can drown out an option that would stand out if only the field were less 

crowded. Savage (1976) provides a nice example to illustrate this this: “You cannot be confident 

of having composed the ten word telegram that suits you best, though the list of possibilities is 

finite and vast numbers of possibilities can be eliminated immediately; after your best efforts, 

someone may suggest a clear improvement that had not occurred to you.”

What (iii) says is that any combination of an option the agent might choose in Γ and an option 

they might choose in ∆ is also left open in the problem Γ + ∆. To see why this has to be true, let 

us return to the example of Julie above. While deciding { k, l } and { m, n } independently is not 

the only way to decide the problem { k, l } + { m, n }, it is one possible way to do it. And as the 

case of Julie illustrates, when the decision is made in that particular way, her decision between k 

and l and her decision between m and n, jointly make for a decision between k + m, k + n, l + m 

and l + n. So when making both both small decisions independently, all combinations of 

responses Julie leaves open in the former situations are ipso facto possible responses to the 

larger problem when it is decided in this manner. 
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For instance, suppose k + n  ∈   γ({ k,  l  }) + γ({ m, n }), where γ is Julie’s agential state. Then 

k ∈ γ({ k, l }) and n ∈ γ({ m, n }), which is to say that Julie leaves open k in the problem { k, l } 

and leaves open  n in the problem {  m,  n  }. It follows that if she is making both choices 

simultaneously and independently, Julie might choose the option k +  n  in response to this 

larger problem, and thus  k + n ∈ γ({ k, l } + { m, n }). More generally, any combination of options 

an agent in state α leaves open in Γ and ∆ is also left open when facing both problems 

independently, and thus also left open in Γ + ∆. Thus (α(Γ) + α(∆))  ⊆  α(Γ + ∆). (But one may 

object to the strong notion of “independent” choices used here; cf. the note on p. 172 below.)

The opposite inclusion α(Γ) + α(∆)  ⊇   α(Γ + ∆) fails because, as discussed in the previous 

section, the problem Γ + ∆ can be faced without facing Γ. Since the agent’s dispositions in 

response to Γ are irrelevant in that case, they might, for example, choose an option a  + b 

although a is ruled out in Γ, in which case a + b ∈ α(Γ + ∆) but a + b ∉ α(Γ) + α(∆).

The notion of an agential state allows us define an agent’s preferences in terms of their 

behavioural dispositions as follows:

An agent α prefers an option a to an option b, written a ≻α b, just in case b ∉ α(∆) for 

all problems ∆ that contain both a and b. (4.3)

Preference thus defined is a strict partial order. Because a ≻α b entails that a but not b is in 

α({a, b}), it follows that ≻α is irreflexive and asymmetric. For transitivity, note that by clause (ii) 

of df. (4.2) it follows from a ≻α b that for any ∆, α({a, c} ∪ ∆) = α({a, b, c} ∪ ∆). So if furthermore 

b ≻α c, then α({a, c} ∪ ∆) = α({a, b, c} ∪ ∆) = α({a, b} ∪ ∆) = α({a} ∪ ∆), whence a ≻α c.
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Besides this categorical notion of preference, we will also want to appeal to a question-specific 

notion of preference:

An agent α Q-prefers an option a to an option b, written a ≻αQ  b, just in case b ∉ α(∆) 

for all Q-raising problems ∆ that contain both a and b. (4.4)

Q-preference is also a strict partial order.

4.5  Definitions and Results 

This section lists the remaining definitions needed to state and prove the representation 

theorems. I take these definitions to be naturally motivated by the discussion in the preceding 

sections and in Chapters 1, 2 and 3. I list them here without further comments or explanation.

4.5.1  Some Notation 

‣ Differences. The difference between a and b, written a – b, is the option c such that for all 

w ∈ 𝒲, c(w) = a(w) – b(w).

‣ Constant options: o is the zero constant option and i the unity constant option: that is 

o(w) = 0 and i(w) = 1 for all w ∈ 𝒲. When using italics for real numbers, boldfaced italics 

are the corresponding constant options. That is , for any x  ∈ ℝ,  x(w) = x for all w ∈ 𝒲.

‣ Restriction: for any option a and any proposition p, ap is the option ap(w) = a(w) for all 

w ∈ p, and ap(w) = 0 for all w ∉ p. (In particular, ip(w) = 1 for all w ∈ p, and ip(w) = 0 for all 

w ∉ p.)

‣ Scalar multiples: r · a is the option b such that b(w) = r · a(w) for all w ∈ 𝒲; also –a = –1 · a.

‣ Weak dominance: a ≥ b just in case a(w) ≥ b(w) for all w ∈ 𝒲.
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4.5.2  Classical Belief and Credence 

An option a (strictly) dominates an option b, written  a > b, just in case a(w) > b(w) 

for all w ∈ 𝒲. An option a (strictly) p-dominates an option b, written  a >p b, just in 

case a(w) > b(w) for all w ∈ p. (4.5)

An agent α classically believes p just in case they will always prefer a p-dominant 

option. That is to say, just in case for any options a and b,  a ≻α b whenever a >p b. 

The classical belief state of an agent α is the following set of propositions: 

CBα    =df    { p ∈ 𝒫(𝒲) : α classically believes p } (4.6)

Result. For any agent α, if CBα ≠ Ø, then CBα is a consistent classical information 

state. (4.7)

Proof. See §2.2 above.

An agent α discerns dominant options if and only if they always prefer strictly 

dominant options; that is, if and only if a ≻α  b whenever a > b. (4.8)

If p is a proposition and x is a real number in the interval [0, 1], then an option a 

x‑p‑governs an option b, written a  >x
p   b, just in case for any w ∈ p, and any v ∈ ¬p:

x · (a – b)(w)    >    (1 – x) · (b – a)(v)

Or equivalently, just in case x · minp (a – b)  >  (1 – x) · max¬p (b – a). (4.9)

An agent α has classical credence x in the proposition p just in case the agent always 

prefers x‑p‑governing options. That is, just in case  a ≻α b whenever a >x
p b. The 

classical credence state of an agent α is the (partial) function CCrα: 𝒫(𝒲) → [0, 1] 
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such that CCrα(p) = x if and only if α has credence x in the proposition p. (4.10)

An agent α is classical if and only if they satisfy these conditions:

i) α’s classical belief state CBα  is a consistent classical information state

ii) α’s classical credence state CCrα  is a classical probability

iii) α maximises the expected utility given CCrα. That is, for any decision 

problem ∆,

α(∆)    ⊆    { a ∈ ∆ : for all b ∈ ∆, ECCrα(a) ≥ ECCrα(b) } (4.11)

Classical Representation Theorem. An agent is classical if and only if they discern 

dominant options. (4.12)

4.5.3  Inquisitive Belief and Credence 

An agent α inquisitively believes AQ just in case they always Q‑prefer A-dominant 

options. That is to say, just in case for any options a and b,  a ≻αQ  b whenever a >A b. 

The inquisitive belief state of α is the following set of quizpositions:

QBα    =df    { AQ : α inquisitively believes AQ } (4.13)

Result For any agent α, if QBα ≠ Ø, then QBα is a coherent inquisitive information 

state. (4.14)

Proof. See §2.11 above.

An agent α has inquisitive credence x in the quizposition AQ just in case the agent 

always prefers x‑A‑governing Q-options. The inquisitive credence state of an agent 
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α is the partial function QCrα: 𝒬(𝒟)  → [0, 1] such that QCrα(AQ) = x if and only if α 

has inquisitive credence x in the quizposition AQ. (4.15)

An agent α discerns better outcomes if and only if they always prefer strictly better 

outcomes; that is, if and only if for any x, y ∈ ℝ,  x ≻α y whenever x > y. (4.16)

An agent α is inquistive if and only if they satisfy these conditions:

i) α’s inquisitive belief state QBα  is a coherent inquisitive information state

ii) α’s inquisitive credence state QCrα  is an inquisitive probability

iii) α maximises the expected utility given QCrα. That is, for any decision 

problem ∆ raising a question Q ∈ 𝒟QCrα ,

α(∆)    ⊆    { a ∈ ∆ : for all b ∈ ∆, EQCrα(a) ≥ EQCrα(b) } (4.17)

Inquisitive Representation Theorem. An agent is inquisitive if and only if they 

discern better outcomes. (4.18)

4.5.4  A General Representation Theorem 

An agent discerns dominant Q-options if and only if they prefer strictly dominant 

options when faced with Q; that is, if and only if a ≻αQ  b whenever a > b. (4.19)

General Representation Theorem. An agent maximises inquisitive expected utility 

when faced with a question Q if and only if they discern dominant Q‑options. (4.20)
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4.6  Proofs 

In this section, I prove the three representation theorems (4.12), (4.18) and (4.20). Since the only 

person we talk about in this section is our friend α the arbitrary agent, we will avoid some 

clutter by omitting the subscripted αs.

4.6.1  Coherence of Credences 

This subsection proves that classical credences cohere with one another. These are conditional 

results of the form “If α has such and such classical credences, then…”. In the next section we 

will discharge all those antecedents, showing that any agent who discerns dominant options has 

credences about all propositions.

Lemma 4.21  If an agent α has any classical credences at all, then α discerns dominant options 

and has classical credence 1 in ⊤.

Proof. Suppose agent α has classical credence x in some proposition p or other. Note that  the 

condition for ⊤-1-governance is that (a – b)(w) > 0 for all w ∈ ⊤, which is equivalent to a > b. So 

all we need to show is that α prefers a over b whenever a > b. Suppose a > b. Then for any 

w ∈ p, v ∈ ¬p (indeed for any w and v at all), x · (a – b)(w)  >  0  >  (1 – x) · (b – a)(v). In other 

words, a  >x
p   b, so that a ≻ b. ∎

Lemma 4.22  Suppose an agent has classical credence x in p, and classical credence y in q, where 

p entails q, then x ≤ y. Consequently, an agent has at most one credence in a given proposition.

Proof. Suppose α has classical credence x in p, where x > 0. Let q be a proposition entailed by p 

and let y be such that 0 ≤ y < x. We show the agent does not have credence y in q. If y = 0, let ε be 

167



an arbitrary positive value. If y > 0 let ε := (x – y)/2y > 0. Consider the following bet:

      p       ¬p

 b 1 – x + ε – x

 o       0       0

Note that for all w ∈ p, v ∈ ¬p:

x · (b – o)(w) = x · (1 – x + ε) > x · (1 – x) = (1 – x) · (o – b)(v)

Hence b p-x-dominates o, so that b ≻ o. Now note that since p entails q, there are no p‑worlds 

outside q so that b(v) = – x for all v ∈ ¬q.  Hence we have, for all w ∈ q and v ∈ ¬q, 

y · (o – b)(w)  –  (1 – y) · (b – o)(v) ≥  – y · (1 – x + ε) + (1 – y) · x

=  x – y  –  yε   = { 
x if y = 0

(x – y)/2 if y > 0

>  0

So o q-y-dominates b, and yet o ⊁ b. So α does not have credence y in q. (It follows from this 

result that if an agent has credences x and y in p, x ≥ y ≥ x, whence x = y.) ∎

Lemma 4.23  Suppose p, q are disjoint propositions, and suppose α has classical credences x, y 

and z in propositions p, q and (p ∨ q) respectively. Then z = x + y.

Proof. Let α, p, q, x, y and z be as specified. Now suppose the agent simultaneously faces the a 

bet on p and a bet on q of the following kind, where ε > 0:

     p       ¬p         q       ¬q

 p– 1 – x – ε – x q– 1 – y – ε – y

 o      0          0 o      0          0
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Note that o  >x
p  p– : for all w ∈ p, v ∈ ¬p

x · (p– – o)(w)   = x · p–(w)  =  x · (1 – x – ε)     <    x · (1 – x)   =  (1 – x) · (o – p–)(v)

Thus o ≻ p–, and likewise o ≻ q–. Hence α({ p–, o }) + α({ q–, o }) = { o } + { o } = { o }. Hence by 

clause (4.2.iii) in the definition of an agential state,  o ∈ α({ p–, o } + { q–, o }). Here is a matrix for 

that problem { p–, o } + { q–, o }:

p¬q ¬pq   ¬(p ∨ q)

 p– + q– 1 – (x + y) – ε 1 – (x + y) – ε – (x + y)

 p– 1 – x – ε – x – x

 q– – y 1 – y – ε – y

 o 0 0 0

Note that there is no column pq because p and q are disjoint. Option o is left open in this 

problem, so apparently p–  + q– ⊁ o. Hence p– + q– apparently does not (p ∨ q)-z-dominate o. So it 

must be that for some w ∈ (p ∨ q), v ∈ ¬(p ∨ q),

z · (p– + q–)(w) ≤    (1 – z) · – (p– + q–)(v)

z · (1 – (x + y) – ε) ≤    (1 – z) · (x + y)

z · (1 – ε) ≤    (x + y)

Since this is true for all positive ε, it follows that (x + y) ≥ z. For the other inequality, we run 

much the same argument. Consider of the following decision problems:

     p       ¬p         q       ¬q

 p+ 1 – x + ε – x q+ 1 – y + ε – y

 o      0          0 o      0          0

Here p+ >x
p  o and so that p+ ≻ o, and q+ >y

q o so that q+ ≻ o. We conclude in the same way as 
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before that o ⊁ p+ + q+, and from that it follows that for some w ∈ (p ∨ q), v ∈ ¬(p ∨ q)

– z · (p+ + q+)(w) ≤    (1 – z) · (p+ + q+)(v)

z · (p+ + q+)(w) ≥    (1 – z) · – (p+ + q+)(v)

z · (1 – (x + y) + ε) ≥    (1 – z) · (x + y)

z · (1 + ε) ≥    (x + y)

Since this is again true for arbitrarily small ε, that gives us z ≥ (x + y). ∎	

Theorem 4.24  Suppose α has classical credences about every proposition. Then α’s classical 

credences form a classical probability CCrα. 

Proof. Lemma 4.22 ensures there is only one classical credence per proposition, so that we can 

define the function CCrα. Lemma 4.21 give us that CCrα(⊤) = 1, and lemma 4.23 gives us finite 

additivity. ∎

4.6.2  From E-Values to Expected Values 

This subsection demonstrates that agents who discern dominant options do in fact have 

credences about every proposition. Combined with theorem 4.24, this yields the conclusion that 

their credences are a classical probability.

Lemma 4.25  If a ≻ b then for any option c, c + a ≻ c + b. (In particular, –b ≻ –a.)

We show the contrapositive. Suppose that for some c, c + a ⊁ c + b, then by definition (4.3), 

there is some ∆ such that c + b ∈ α(∆ ∪ {c + a, c + b}). Hence b ∈ α({–c}) + α(∆ ∪ {c + a, c + b}). 

But note that  {–c} + ∆ ∪ {c + a, c + b} =  Γ ∪ {a, b} for some Γ. Hence by (4.2.iii), b ∈ α(Γ ∪ {a, b}), 

whence a ⊁ b. (To get the corollary that a ≻ b entails –b ≻ –a, consider the case c = –(a + b).) ∎
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Definition 4.26  For every action a, the E-value of a is E(a) = sup{ x : a ≻ x }.

Note: As the notation foreshadows, we will prove below that the E-value is identical to the 

classical expected value of the option for the agent. By standard mathematical convention, if 

{ x  : a ≻ x } is empty, E(a) = –∞, and if it is unbounded above, E(a) = +∞. But as long as α 

discerns dominant options, and a is bounded, neither case is instantiated. And assuming α 

discerns better outcomes, E(z) = z for all z ∈ ℝ, since x ≻ y just in case x > y.

Lemma 4.27  If α discerns dominant options, then for any action a, E(a)  =  inf { x : x ≻ a }

Proof: Assume α discerns dominant options. Then x ≻ y just in case x > y, so by transitivity of ≻, 

{ x : a ≻ x } is closed downwards and { x : x ≻ a } is closed upwards. By antisymmetry of ≻, the 

sets are disjoint so that inf { x : x ≻ a } ≥ sup { x : a ≻ x } = E(a). As just pointed out, since α 

discerns dominant options, we can suppose E(a) < +∞. 28

Now let r be any real number greater than E(a). Suppose for contradiction that r ⊁ a. Let s be 

any number between E(a) and r. It must be that a ⊁ s, because s > E(a) = sup{  x  :  a ≻ x }. 

Because r ⊁ a and a ⊁ s, there are some Γ and ∆ such that a ∈ α(Γ ∪ {r, a}) and s ∈ α(∆ ∪ {s, a}). 

Hence, by (4.2.iii), a + s ∈  α(∆  ∪  {r,  a}) + α(Γ  ∪  {s,  a}). By (4.2.iii), it follows from this that 

a + s ∈ α(∆ ∪ {r, a} + Γ ∪ {s, a}). But then r + a ⊁ a + s which contradicts the assumption that α 

discerns dominant options. So r ≻ a after all. So any real number r greater than E(a) is also 

greater than inf { x : x ≻ a }, whence  E(a)  =  sup { x : a ≻ x }  =  inf { x : x ≻ a }. ∎

  But even if a were unbounded, and E(a) = +∞, the result would still hold. For then  { x : x ≻ a } = Ø so 28

that inf{ x : x ≻ a } = +∞ = E(a)
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Corollary 4.28  If α discerns dominant options and E(a) > E(b), then a ≻ b. 

Suppose α discerns dominant options and E(a) > E(b). Then by Lemma 4.27, for any value y in 

the interval between them, a ≻ y ≻ b. ∎

Note: Lemma 4.27 is essentially involved in showing that credences must be sharp. It uses an 

insight from Adam Elga’s (2010) argument against fuzzy credences. For most other results 

above, one can make do with a weaker version of (4.2.iii), namely  

4.2.iii*   For all Γ, ∆, and α,  α(Γ + ∆) ∩ (α(Γ) + α(∆)) ≠ Ø

However, this proof makes essential use of the stronger (4.2.iii). Defenders of fuzzy credences 

may wish to consider adopting (4.2.iii*) instead, though I have not investigated this possibility.

Lemma 4.29 If α discerns dominant options, then E is linear: E(r · a + s · b) = r · E(a) + s · E(b) 

for any options a, b, and any real numbers r and s. Furthermore, E(a) ≥ E(b) whenever a ≥ b.

Proof. We split up the result into the following sublemmas:

i) E(–a) = –E(a).  

Using lemmas 4.25 and 4.27, E(–a)  =  inf{ –x : –x ≻ –a }  =  inf{ –x : a ≻ x }  

=  – sup{ x : a ≻ x }  =  –E(a)   

ii) E(a + b) = E(a) + E(b).  

Suppose a ≻ x and b ≻ y. By lemma 4.25, a + b ≻ a + y ≻ x + y. So  

{ x + y : a ≻ x, b ≻ y }   ⊆   { z : a + b ≻ z }. 

Therefore, by definition of E, E(a + b) ≥ E(a) + E(b). Likewise, E(a) = E(–b + (a + b)) ≥        

E(–b) + E(a + b) = –E(b) + E(a + b) (using (i)). So E(a) + E(b) ≥ E(a + b). 
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iii) If a ≥ b, E(a) ≥ E(b) 

Suppose  a ≥ b. Then a – b > x for any negative x. So since α discerns dominant options, 

a – b ≻ x for all x < 0. It follows by the definition of an E-value (4.26) that E(a – b) ≥ 0, so  

using (ii), E(a) = E(b) + E(a – b) ≥ E(b).

iv) For any integer n, E(n · a) = n · E(a) 

E(0 · a) = E(o) = 0. If n is positive, E(n · a) = E(a + … + a) = E(a) + … + E(a) = n · E(a), 

using (ii). If n is negative, we get the result from (i).

v) For any rational number q, E(q · a) = q · E(a) 

Suppose q = m/n. By (iv), n · E(q · a) = E(nq · a) = E(m · a) = m · E(a)

vi) For any real number r, E(r · a) = r · E(a) 

Let p = {w : a(w) ≥ 0}, so that ap ≥ o. Note that a = ap + a¬p. Now let q, q’ be any rationals 

such that r ∈ (q, q’). Then q · ap ≤ r · ap ≤ q’ · ap. Hence E(q · ap) ≤ E(r · ap) ≤ E(q’ · ap), using 

(iii). So by (v), q · E(a) ≤ E(r · ap) ≤ q’ · E(a) for any such q, q’. So it must be that E(r · ap) = 

r · E(ap). Similarly, E(r · a¬p) = r · E(a¬p) so that E(r · a) = r · (E(ap) + E(a¬p))  = r · E(a). ∎	

Theorem 4.30 If α discerns dominant options, and p is any proposition, then α has classical 

credence E(ip) in the proposition p. And α’s credence state is the classical probability 

CCrα(p) = E(ip).

Proof. Let p be any proposition, let c = E(ip), and let a and b be any actions such that a >c
p b. We 

need to show that a ≻ b. By the definition of governance (4.9), we have for all w ∈ p, v ∈ ¬p 

c · (a – b)(w)    >    (1 – c) · (b – a)(v) (*)

Let r = minp a – b and s = min¬p a – b = –max¬p b – a. Then from (*) we get c · r > (1 – c) · (–s), 

whence c · r + (1 – c) · s > 0.
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Now consider the option m := r · ip + s · i¬p. Note (a – b) ≥ m, and also note that, by lemma 4.29, 

E(i¬p) = E(i – ip) = E(i) – E(ip) = 1 – c. Thus we have, using lemma 4.29 again, that

E(a)   =   E(b) + E(a – b)  ≥   E(b) + E(m)   =    E(b)  + r · E(ip) + s · E(i¬p)

=  E(b)  +  c · r + (1 – c) · s    >   E(b)

And hence by corollary 4.28, a ≻ b, which is what we wanted to show. Thus E(ip) is α’s classical 

credence in p. By theorem 4.24 above, the function CCrα(p) = E(ip) is a classical probability. ∎

Corollary 4.31 If α discerns dominant options, a ≻ b whenever ECCrα(a) > ECCrα(b).

Proof. We need to show that for any a, E(a) = ECCrα(a). The result will then immediately follow 

by corollary 4.28. For all the possible values u of a, let iu(w)  =  1 if a(w) = u, and iu(w) = 0 

otherwise, so that we can write a = Σu  u · iu. By theorem 4.30, E(iu) = CCrα ({ w : a(w) = u }). Thus 

by linearity (4.29), 

E(a) = E(Σu u · iu) = Σu u · E(u) = Σu u · CCrα ({ w : a(w) = u }) = ECCrα(a). ∎

Note.  This proof, as well as the definition (3.2) of a classical expected value, use the assumption 

that a has only finitely many possible values. This follows from the assumption that there are 

finitely many possible worlds, but both the definition of expected value and the result (4.31) can 

be extended to cover the case where a has infinitely many different outcomes. In that case, we 

will want to build it into the definition of an option that options are to be bounded functions. 

(This is to avoid paradoxes like those discussed in McGee 1999, Arntzenius and Barrett 1999 and 

Arntzenius, Elga and Hawthorne 2004.) Then we can approximate any option a below and 

above by a sequence of step functions with finite ranges that pointwise converge on a. Using the 

fact that E(a) ≥ E(b) whenever a ≥ b (sublemma 4.29.iii) a squeezing argument will then show 

that E(a) = ECCrα(a) whenever ECCrα(a) is defined.
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Theorem 4.12 All and only agents who discern dominant options are classical

Proof. Result 4.21 shows that discerning dominant options is necessary for the satisfaction of 

clause (i) and (ii) of the definition of a classical agent (4.11). So classical agents discern dominant 

options. Conversely, theorem 4.30 shows that agents who discern dominant options satisfy 

clause (i) and (ii), and corollary 4.31 shows they satisfy clause (iii). ∎	

4.6.3  The Inquisitive Case 

In this subsection, I prove the Inquisitive Representation Theorem (4.18) and the General 

Representation Theorem (4.20). The work done in the preceding subsections easily carries over 

to attitudes about a given question (lemma 4.32 below); all we need to establish is that the 

agent’s attitudes to different questions are linked in the appropriate way.

Lemma 4.32 For any question Q, an agent has inquisitive beliefs and credences about Q only if 

α discerns Q-dominance. If α discerns Q-dominance, then:

A) α has inquisitive credence 1 in QQ.

B) For any A ⊆  B ⊆  Q, α’s inquisitive credence in AQ (if any) is less than or equal to their 

inquisitive credence in BQ (if any). So α has at most one credence in a given quizposition.

C) For disjoint A, B ⊆  Q, α’s inquisitive credence in (A ∪ B)Q (if any) is the sum of their 

inquisitive credence in AQ and in BQ (if any).

D) For all A ⊆ Q, α has an inquisitive credence in AQ 

E) When faced with Q, α always maximises inquisitive expected utility with respect to those 

credences.

Proof. If we put 𝒲 = Q, the definitions classical belief and classical credence in A ⊆ Q coincide 
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exactly with those of inquisitive belief and inquisitive credence in the quizposition AQ. Thus we 

get (A) from lemma 4.21, (B) from 4.22, (C) from 4.23, (D) from 4.30, and (E) from 4.31. ∎

Corollary 4.33  If an agent has credences about some question Q, they have credences about 

every question that is part of Q.

Proof. If R is part of Q, discerning Q-dominance entails discerning R-dominance (from df. 4.19 

above). ∎

Lemma 4.34  An agent α has inquisitive credences about some quizpositions if and only if they 

discern better outcomes.

Proof. If α prefers better outcomes, then they have credence 1 in { 𝒲 }{ 𝒲 } and credence 0 in ⊥{ 𝒲 }

(directly from the definitions 4.15 and 4.16). Conversely, if an agent has a credence in some 

quizposition AQ, then they have credence 1 in QQ (from clause (A) of 4.32). It then follows from 

4.15 that α discerns better outcomes. ∎	

Lemma 4.35 If quizpositions AQ and BR are intensionally equivalent, and some an agent has 

inquisitive credence x in AQ and inquisitive credence y in BR, then x = y.

Proof. Suppose α has inquisitive credence x in AQ and y in BR, and p = ⋃A = ⋃B. We show that 

x and y  are both equal to α’s inquisitive credence in the quizposition { p }{p, ¬p}. For let ∆ be any 

decision situation that raises the polar question { p, ¬p }, containing an option a that x-p-governs 

another option b in ∆. Then, since ∆ also raises the bigger question Q (2.13), b ∉ α(∆) because  α 

has credence x in AQ. So the agent { p, ¬p }-prefers a to b. Thus they have credence x in { p }{p, ¬p}. 

Likewise, they must also have credence y in { p }{p, ¬p}. So by clause (B) of (4.32), x = y. ∎
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Theorem 4.35 If an agent α discerns better outcomes, their inquisitive credence state QCrα is an 

inquisitive probability.

Proof. If α does not discern better outcomes, they have no inquisitive credences (4.32). If they do 

discern better outcomes, their credences determine a function QCrα (clause (B) of 4.32). This 

function is defined on the space 𝒬(𝒟) of all the quizpositions about some domain of questions 

𝒟 (clause (D) of 4.32). The set 𝒟 is closed under parthood (corollary 4.33). 

This function QCrα satisfies the Normality condition of the definition (3.6) of an inquisitive 

credence: for any Q ∈  𝒟, QCrα(QQ) = 1 (clause (A) of 4.32). It also satisfies the Additivity 

condition. For suppose Q contains R, AQ and BR are inconsistent. Then

QCrα((A ∪ QB)Q) = QCrα(AQ) + QCrα(QBQ) (by clause (C) of 4.32)

= QCrα(AQ) + QCrα(BR) (by lemma 4.35) ∎

Theorem 4.18  An agent is inquisitive if and only if they discern better outcomes.

Proof. If the agent fails to discern better outcomes, they have no inquisitive credences or beliefs 

(4.32). If an agent does discern better outcomes, their credence state QCrα is an inquisitive 

probability. Thus they maximise utility (clause (E) of 4.32). And since inquisitive belief (4.13) is 

the same as inquisitive credence 1 (4.15), this entails that α’s belief state QBα is an inquisitive 

information state (see footnote 23 above on p. 123). ∎	

Theorem 4.20  An agent maximises inquisitive expected utility when faced with Q if and only if 

they discern dominant Q‑options.

Proof. If the agent does not discern dominant Q‑options, by 4.32 they have no credences about 
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Q, and so there is no expected utility to maximise. If the agent does discern dominant 

Q‑options, by part (E) of 4.32 they maximise expected utility when faced with Q. ∎

Theorem 4.37  Suppose an agent α inquisitively believes the quizposition WW, the discrete 

question { {w} : w ∈ 𝒲 }. Then α is a classical agent.

Proof. By lemma 4.20, if α inquisitively believes WW, then α discerns dominant W‑options. But 

this is the same as discerning dominant options (see dfs. 4.11 and 4.19). So by theorem 4.12, α is 

classical. ∎	
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Chapter 5.
Mathematical Belief

The quizpositional account of belief content is a hyperintensional theory: it makes distinctions 

between truth-conditionally equivalent belief contents. As explained in chapters 1-3, this feature 

resolves various problems for the classical view of belief and action. However, some other 

problems associated with intensional views of belief content are not directly resolved by the 

view. In this chapter, I will examine one such problem in detail, namely the problem of 

mathematical omniscience. This is the problem of how to understand beliefs about mathematics, 

and especially ignorance and uncertainty about mathematical issues. I will also make some 

remarks about another problem related to hyperintensionality, namely Frege’s Puzzle. In both 

cases, I will argue that while the quizpositional account of belief does not by itself solve the 

issue, it does seem to bring us a step closer to a solution.

In the classical case, the problem of mathematical omniscience is divided into two parts, which 

might be called the problem of explicit mathematical omniscience and the problem of implicit 

mathematical omniscience. In §5.1, I explain the problem of explicit mathematical omniscience, 
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and show why it initially looks like the move from intensional propositions to quizpositions 

makes no progress on this issue at all. In §5.2-3 I discuss the problem of implicit mathematical 

omniscience, and show that the quizpositional view does appear to solve that issue. 

In §5.4, I return to the explicit problem and argue that a satisfactory solution to the explicit 

omniscience problem should allow us to make sense of uncertainty and credences about purely 

mathematical claims. I conclude that in order to achieve this within the constraints of the 

present account of belief, we will have to find a way of associating mathematical claims with 

contingent quizpositions. In §5.5-6, I examine two possible strategies for executing that project. 

In §5.5, I consider the metalinguistic strategy advocated by Robert Stalnaker. First we consider 

this strategy in the context of the classical view of belief, and raise some important objections to 

this strategy due to Larry Powers and Hartry Field. While these objections seem devastating in 

the classical context, they do not carry over to the metalinguistic strategy as adapted to the 

inquisitive theory. §5.6 examines a different, metaphysical strategy for understanding 

mathematical ignorance, namely to endorse the unorthodox position that purely mathematical 

states of affairs are contingent. Again, we find that while this move does not bring us closer to 

resolving the problem on classical assumptions, it does have promise in the inquisitive context.

In §5.7, I turn to an aspect of Frege’s Puzzle, namely the problem about informative identities 

(this is the issue that originally occupied Frege in the Begriffsschrift). Again, I consider a 

metalinguistic strategy for addressing this problem, which is essentially the suggestion Frege 

initially made. It turns out that many of the observations made about the metalinguistic strategy 
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for addressing the problem of mathematical omniscience carry over to this context. For 

analogous reasons, the metalinguistic strategy fails in the context of the classical theory of belief, 

but not in the context of the inquisitive theory.

5.1  The Problem of Explicit Mathematical Omniscience 

According to philosophical orthodoxy, the truths of pure mathematics are necessary truths, 

while pure mathematical falsehoods are always necessary falsehoods –– call this metaphysical 

doctrine mathematical fatalism. Mathematical fatalism immediately creates an issue for the 

intensional account of propositions. For if it is true, then there are only two intensional 

mathematical propositions: the necessary truth ⊤ (the set of all possible worlds), and the 

necessary falsehood ⊥  (the empty set). To make matters worse, the consistency requirement of 

the classical theory entails only the former proposition can be believed. Thus, on the classical 

account, everyone believes every mathematical truth with certainty. Or in other words, 

everyone is mathematically omniscient. On the other hand it is impossible to believe, or even 

lend credence to, any mathematical falsehood.

Unlike the intensional view, the quizpositional (question-directed) view of propositions 

distinguishes a variety of necessary truths: every question Q has its own tautology QQ. 

Furthermore, the quizpositional view of belief states allows for agents who believe some 

necessary truths but not others. So at first sight, it looks like the quizpositional view may have 

some additional resources for representing different states of mathematical knowledge.
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However, when it comes to explicit, pure mathematical beliefs, it is not clear that the plurality of 

tautologies really makes any difference. The issue is that, given mathematical fatalism, there is 

still only one mathematical question. Take for instance the question How many real roots does the 

quintic x5 – 5 · x2  + 1 have? Intuitively, this question has at least five possible answers. But since 

we are identifying questions with partitions of logical space, four of those answers correspond 

to the empty set, while the fifth contains all possible worlds. Hence this question, and every 

other purely mathematical question, imposes the trivial partition { 𝒲 }. So it would appear that 

the inquisitive view does not make progress over the classical view after all. There is still just 

one mathematical truth, { 𝒲 }{ 𝒲 }, which is known by everyone; and there is one mathematical 

falsehood, ⊥{ 𝒲 }, that nobody believes. So on the face of it at least, the quizpositional view is still 

stuck with the bizarre conclusion that we are all mathematically omniscient.

This problem seems to show that both the intensional and quizpositional accounts of belief 

impose an unacceptable level of idealisation on believers. As Stalnaker once wrote, “One cannot 

treat a mathematician’s failure to see all the deductive relationships amongst the propositions 

that interest him [as deviations from the norm of rationality] without setting aside all of 

mathematical inquiry as a deviation from rationality. But this would be absurd. Mathematical 

inquiry is a paradigm of rational activity, and a theory of rationality which excluded it from 

consideration would have no plausibility.” (Stalnaker 1976, p. 87; cf. Chapter 6 below).

At the same time, it would not be quite fair, I think, to regard it as a very serious objection 

against the inquisitive account of belief in particular that it fails to tackle this issue right off the 

bat. I never claimed that quizpositions would solve every problem, and this particular problem 

182



touches on many difficult issues about the nature of mathematics outside of the scope of the 

present inquiry. It is entwined with a range of complex questions about the nature and content 

of pure mathematical beliefs that continue to present a mystery to everyone. For instance, the 

basic puzzles in Benacerraf 1965, 1973 are still widely regarded as unresolved. 

Stalnaker (1984, 1999b) argued that the intensional account of belief simply brings out more 

starkly a problem about mathematical knowledge that everybody has to confront in one form or 

other. I am inclined to think that he was right about this. It is not as if advocates of syntactically 

structured propositions are in possession of a satisfactory, fully developed epistemology for 

mathematics. Witness for instance Haim Gaifman’s (2004) difficulties in defining a coherent 

concept of credence that is applicable to arithmetical statements. There is a reason that large 

swathes of work in epistemology implicitly or explicitly brackets the case of mathematical 

knowledge and belief. Independently of the conception of cognitive content assumed, 

mathematical beliefs are poorly understood.

So it is not clear that the inquisitive/quizpositional theory of belief is really any worse off than 

other theories of belief with regard to this particular problem. But I think we can do better than 

that, and show that it is a good deal better off than the classical theory at least. The 

considerations set out below persuade me that the inquisitive turn is likely to be one important 

component of the solution to the tangled cluster of issues that converge in the problem of 

mathematical omniscience, although I confess I do not really know what that ultimate solution 

will look like. If I am right about that, it is surely an additional point in favour of the inquisitive 

theory.
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5.2  The Problem of Implicit Mathematical Omniscience 

In 2003, mathematician Timothy Pennings performed an experiment on his dog, a Welsh corgi 

named Elvis. He would take Elvis for walks around Lake Michigan and throw a ball into the 

lake. Elvis’ task was to retrieve the ball as quickly as possible. This confronted Elvis with the 

decision problem represented in figure 9: at which point to jump into the water? Determining 

the optimal jumping point given the initial conditions is a non-trivial mathematical problem.

 
FIGURE 9: PATHS TO THE BALL (SOURCE: PENNINGS 2003)

In Figure 9, point B represents the spot where the ball lands, Elvis’s starting point is the point A, 

and the line AC represents the edge of the water. Elvis is much faster running on land than 

swimming. In order to minimise his travel time, Elvis needs to jump into the water at just the 

right point D between A and C.

In Pennings’ trials, he found that Elvis would identify the optimal jumping point with 

remarkable accuracy. He reported his findings in the College Journal of Mathematics under the 
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title “Do Dogs Know Calculus?” (Pennings 2003). The editors of the journal were rather more 

willing to jump to conclusions, and ran with the headline “Elvis, the King of Calculus.” The 

article sparked a vivid debate about the nature and the extent of Elvis’ apparent mathematical 

knowledge (e.g. Dickey 2006, Perruchet and Gallego 2006, Bolt and Isaksen 2010). 

It is not plausible that Elvis’ understanding of the situation amounts to explicit knowledge of 

the relevant mathematical facts. Pennings notes, for instance, that Elvis “has trouble 

differentiating even simple polynomials” (p. 182). Nonetheless, it is very natural to describe 

Elvis as exhibiting a kind of implicit mathematical knowledge: after all, he behaves as though he 

knows the solution to this abstract optimisation problem. For present purposes, I want to take 

this notion of implicit mathematical knowledge at face value, without attempting to analyse it.

Just as Elvis’ behaviour intuitively bears out some implicit mathematical knowledge, other 

behaviours bear out a lack of implicit mathematical knowledge. A particularly well-known 

example of the phenomenon, in humans, is the bat-and-ball puzzle from Shane Frederick and 

Daniel Kahneman (2002):

A bat and a ball cost $1.10 together. The bat costs $1.00 more than the ball. How 

much does the ball cost?

In attempting this problem, almost everyone considers the answer “10 cents.” Most people stick 

with that initial hunch (Frederick 2005), but it is not the right answer. If the ball were to cost 10 

cents, the bat would cost $1.10 on its own, and so the bat and ball would be $1.20 together, rather 

than $1.10. Once you see that 10 cents is too much, it becomes easy to guess and verify the 
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correct answer: the ball costs 5 cents and the bat is $1.05.

There is a simple linear equation behind this exercise: (1 + b) + b = 1.1, where b is the cost of the 

ball. Those who derive the right answer can be said to have implicitly solved the equation: they 

exhibit a certain implicit mathematical knowledge. By the same token, the majority, who do not 

produce the right answer, implicitly fail to solve the equation correctly: you might say they 

exhibit a certain implicit mathematical ignorance.

Now one of Kahneman and Frederick’s points with this this example is that the classical picture 

cannot account for what is going on. Frederick’s respondents were some of America’s finest 

young minds, all undergraduates at top institutions. So it is safe to assume that they fully 

understood the exercise. In particular, they know that the bat cost 1 + b, and that the total price 

of bat plus ball is $1.10. Now those two pieces of information by themselves entail that the ball 

costs 5¢. So if the students had classical belief states, they would believe that the ball costs 5¢, 

since their beliefs would be closed under entailment. However, it is evident from their responses 

that the majority did not form that belief. The moral of the story is that the classical account 

does not only rule out the possibility of explicit mathematical ignorance, but also the possibility 

of implicit mathematical ignorance.

Here is a different, more interesting example of mathematical ignorance. Figure 10 below 

displays the ancient Two Lovers puzzle (also known as the Five Yen puzzle or Solomon’s Seal). 

The  initial setup is displayed on the left. The aim is to manoeuvre the two rings until they are 

adjacent to one another on the string, as in the diagram on the right. You cannot cut the string or 
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break the board, and the rings are too large to pass through any of the holes.

FIGURE 10: THE TWO LOVERS PUZZLE –– HOW TO BRING THE RINGS TOGETHER? (SOURCE: HISAYOSHI 2003)

Although this can in fact be done, it is surprisingly difficult to find the solution. Puzzles like 

these can be viewed as physical instantiations of problems in topology or knot theory, and every 

step of the solution corresponds systematically to a step in the solution of the analogous maths 

problem (Nishiyama 2011; also Kauffman 1996, Horak 2006). In solving this puzzle, one is 

implicitly solving an abstract topological problem, and failure to see the solution is an implicit 

failure to solve to the isomorphic mathematical problem.

Again, the classical picture cannot account for people’s behaviour in these cases. After a few 

minutes with this puzzle, anyone knows the basic mechanics of the construction. But these 

physical facts about the setup entail a method to arrive at a solution: at every possible world 

where the puzzle has thus and such physical structure, a certain particular sequence of steps 

leads to a solution. So on the classical account, anyone familiar with the puzzle should know 

how to solve it. However, it is evident from people’s behaviour that this is not true. 
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Obviously this generalises. Whenever we are faced with a problem that can in principle be 

solved through mathematical calculation, it must be that the information we are given is 

sufficient to entail the solution. Thus the classical picture, according to which our beliefs are 

closed under entailment, predicts that in such cases one knows the solution in virtue of 

knowing the information we were given to start with. Implicit mathematical ignorance is 

manifested precisely when the believer in question fails to see the solution in spite of having all 

the necessary information. The classical picture does not allow for this possibility, whence it 

falsely predicts that implicit mathematical ignorance is impossible: this the problem of implicit 

mathematical omniscience.

(As the example of Elvis showed, implicit mathematical knowledge does not entail explicit 

mathematical knowledge. It might be worth noting that implicit mathematical ignorance, as 

roughly characterised by means of these examples, likewise does not entail explicit 

mathematical ignorance. A mathematician who knows the solution to the right abstract 

topological problem could in principle use this knowledge to solve the Two Lovers puzzle. But 

they are only in a position to do that once they see that the puzzle is a concrete instantiation of 

the relevant mathematical model. If the mathematician fails to make this link, they may still fail 

to solve the puzzle. Similarly, it is possible for someone who has just solved the equation 

(1 + b) + b = 1.1 to get tripped up by Kahneman and Frederick’s question anyway, if they fail to 

make the connection between the equation and the story about the bat and the ball. In saying 

that agents’ behaviours in theses cases manifest implicit ignorance of the mathematics, I just 

mean to say that the agent is manifestly failing to apply any knowledge of the relevant 
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mathematics to the situation: this can happen whether the agent has the explicit mathematical 

knowledge in question or not.)

5.3  A Solution to the Implicit Problem 

The advantage of focussing on the problem of implicit mathematical omniscience is that in 

doing so we can, for the moment, bracket all the deep metaphysical questions about the nature 

of mathematical propositions. The reason is that, in the cases of mathematical knowledge and 

ignorance described in the last section, there are no mysteries about the nature of the relevant 

explicit beliefs, which are about concrete, contingent matters. The relevant beliefs of Elvis the 

corgi, for instance, are beliefs about the position of the ball, running speed, where to jump to get 

to the ball quickly, etcetera. So for the purpose of explaining Elvis’ behaviour, enigmas about the 

nature of mathematics can be left to one side.

Now what we find when we look at all these cases from an inquisitive perspective is that the 

implicit problem of mathematical omniscience has essentially dissolved. Take the bat-and-ball 

example for instance. We can assume that after reading the exercise, Frederick’s respondents 

have gathered the quizpositional beliefs AQ and BR, where

‣ Q: How much did the bat and ball cost together?, A: $1.10

‣ R: What is the difference between the price of the bat and the price of the ball?, B: $1

And given their response, most respondents apparently drew the conclusion CS:

‣ S: What is the price of the ball?, C: $0.10
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Since the questions Q, R and S do not overlap, these three beliefs, while inconsistent, all fit 

together into a coherent inquisitive information state. And attributing this combination of 

beliefs to Frederick’s respondents accounts for all their behaviour.

Those who did get the right answer, by contrast, ended up drawing the correct conclusion from 

AQ and BR, namely DS:

‣ S: What is the price of the ball?, D: $0.05

Thus the inquisitive theory distinguish two different doxastic states, each of which explains the 

behaviour of the corresponding group. By contrast, the classical view can only explain the 

behaviour of those who got the right answer. In other words, the classical view assumes implicit 

as well as explicit mathematical omniscience, while the inquisitive view can easily 

accommodate this manifestation of mathematical ignorance.

Frederick 2005 provides two other nice examples, about which analogous points can be made. 

One is “It takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines 

to make 100 widgets? _____ minutes.” And “In a lake, there is a patch of lily pads. Every day, 

the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long 

would it take for the patch to cover half of the lake? _____ days.” Most people instinctively 

answer “100” and “24” respectively. But some reflection reveals that the correct answers are in 

fact “5” and “47”. All three puzzles cause trouble for the the classical view, while allowing for a 

straightforward quizpositional analyses.30

Likewise, in the Two Lovers case, we can represent the agent’s knowledge of the situation by a 
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collection of quizpositions about various aspects of the setup: the thread goes this way, then 

through that hole, then that way; the rings are attached to the string on either side of the hole; and so on. 

Different agents may vary as to which exact questions they take those beliefs to answer. But it is 

clear at the outset that none of those beliefs is going to have any immediate bearing on the 

questions they are faced when attempting to solve the puzzle, like How do I get the ring to the 

other side? or What move should I make first? A trial-and-error approach to the puzzle is precisely 

what you would expect, given this belief state. Thus the inquisitive account easily yields an 

explanation for people’s typical response to this puzzle.29

In principle, an alternative to trial-and-error is to try and reason your way to a solution. For 

your average person, this priori method is not likely to succeed on its own, because the issues at 

play are quite complex (Nishiyama 2011). But a knot theorist or topologist will have a better 

chance of success. Their mathematical experience gives them a better understanding of how to 

think about the situation, and of what transformations are possible. Or one might say that 

topologists have learnt what the right questions are to ask in this situation, and have 

 These observations only establish that the inquisitive theory, unlike the classical theory, has the 29

resources to represent the belief states of both the successful and the unsuccessful respondents. This is 

certainly progress, but it leaves other interesting questions in the neighbourhood unanswered: How did 

they acquire those belief states? What accounts for the difference between those who get the right answer 

and those who get the wrong answer? And especially: what explains the attractiveness of the illusory 

inference CS ? These questions are beyond our present scope, but I do want to note the relevance of 

Philipp Koralus’ and Salvador Mascarenhas’ work in this context. These authors have shown how an 

inquisitive account of mental content can be used to account for illusory inferences and a wide range of 

common reasoning mistakes. See Koralus and Mascarenhas 2013, 2018, Mascarenhas and Koralus 2015, 

2017, Parrott and Koralus 2015, Sablé-Meyer and Mascarenhas 2019.
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internalised certain useful ways of dividing up logical space (this is in line with a suggestion by 

Pérez Carballo 2016 and the account of deduction provided in Chapter 2 above).

What about the genius corgi Elvis? Here the classical account gets the right result: assuming 

knowledge of the initial conditions, the classical theory correctly predicts that Elvis knows 

where to jump. But even in this case, I think the inquisitive account gives us a more realistic 

picture of what is going on. The inquisitive account admits the possibility of implicit 

mathematical knowledge: it is just not the only possibility. Presumably, Elvis has somehow 

learnt to link his observations about the ball to his opinion on where to jump. It seems unlikely 

that this mental process really involves the sorts of calculus that Pennings presents in his paper. 

More plausibly, the transition involves a quicker, more direct heuristic. In particular, it seems 

plausible that with practice, Elvis acquired a set of beliefs of the form If the ball lands there, 

jumping here will get me to the ball the quickest, which provide a direct link between his estimation 

of where the ball lands and his view on where he should jump.

The classical theory explains Elvis’ success in terms of a necessary connection between his views 

on the initial conditions and his view of the jumping off point. The alternative explanation just 

proffered explains it in terms of Elvis’ acquisition of a contingent and fallible heuristic that links 

the two. It strikes me that the latter explanation is preferable, being both more plausible and 

more empirically adequate. First of all, unlike the classical story, the inquisitive story can 

accommodate the fact that Elvis’ judgment is less than perfectly accurate (Pennings’ data show 

that on a few occasions, Elvis’ estimates were far off the optimal mark). Secondly, because the 

possession of that heuristic is contingent, the inquisitive explanation does justice to the fact that 
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Elvis’ knack for this is at least somewhat remarkable: there is a good reason that Elvis’ picture 

was featured on the cover of the College Journal of Mathematics. The classical theory, by contrast, 

fails to account for the fact that many dogs would do a worse job at making the right call (as 

would most humans for that matter, even those that know a lot of calculus).

To sum up: even though the inquisitive account of belief does not come pre-packaged with a 

solution to the problem of explicit mathematical ignorance, it does yield a solution to the 

problem of implicit mathematical ignorance “straight out of the box,” without any fancy 

footwork required. That should give us some courage as we investigate how the explicit 

problem of mathematical ignorance should be addressed.

5.4  Credence and Contingency 

In the last section, I mentioned Alejandro Pérez Carballo’s (2016) account of pure mathematical 

knowledge, according to which “to discover a new mathematical theory (or structure) is not to 

acquire a new [contingent] belief. Rather, it is to change the granularity of one’s working picture 

of logical space—in other words, to change one’s working hypothesis space.” (p.  482) Pérez 

Carballo is rather vague about exactly what this comes to, but what he says is clearly 

reminiscent of the way that, in the present theory, believing a tautological quizposition QQ is not 

a matter of having information, but of partitioning the space of possibilities (see also Rayo 2013, 

and §2.5-10 above). So the most straightforward way of implementing Pérez Carballo’s 

suggestion in the present framework would be to say that mathematical beliefs are beliefs in 

tautological quizpositions (that is, quizpositions of the form QQ).
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To some extent, the discussion in the last two sections vindicates this idea: by learning new 

tautologies, one can come to see more consequences of ones beliefs, and thus gain implicit 

mathematical knowledge. Nevertheless, I do not think that this way of thinking about 

mathematical belief will ever yield a fully satisfactory account of mathematical knowledge and 

belief. One major issue is that it is unclear, given the issues pointed out in §5.1, how to associate 

mathematical claims with non-trivial questions. Pérez Carballo provides a suggestive example 

involving the bridges of Königsberg, but it is not at all clear how this is supposed to generalise 

even to other applications of graph theory.30

But even if there were a systematic way to map purely mathematical statements to tautological 

quizpositions, that still would not give us what we need. The reason is that, on the inquisitive 

theory of belief, one can only have two attitudes to a necessarily true quizposition: credence 1 or 

no attitude at all. Likewise, one can have two attitudes to a necessarily false quizposition: 

credence 0 or no attitude at all. But, as Haim Gaifman (2004) extensively argued, this is not at all 

satisfactory as an account of mathematical beliefs.

For one, it is possible to have false mathematical beliefs. To take an example from Gaifman, 

 Elsewhere in the article, Pérez Carballo seems to be aware of this issue, and suggests that a 30

mathematical belief is instead an ability to divide logical space in certain ways, where each individual 
division corresponds to an application of the mathematical theory (see e.g. bottom of p. 472). In the 
present case this would correspond to an ability to acquire certain beliefs of the form QQ. As far as I can 
see however, this more sophisticated formulation fails for somewhat analogous reasons to the ones I am 
about to adduce against the straightforward implementation. In particular, it is still entirely unclear, on 
Pérez Carballo’s proposal, what it would be to have a false mathematical belief, or to be unsure about a 
particular mathematical proposition.
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Marine Mersenne believed that 267 − 1 is prime, but in fact it is not. Or take the example of the 

Banach-Tarski theorem, which, according to Hartry Field (1978), would strike anyone unfamiliar 

with it as being highly implausible. And besides outright belief and disbelief, all intermediate 

doxastic attitudes seem possible and reasonable as well. For instance, it is the present consensus 

amongst number theorists that Goldbach’s conjecture is extremely likely to be true. But most 

would stop short of saying they were absolutely certain of it. For example Neil Sheldon (2003) 

argues that your credence in the Goldbach conjecture should be 1  – 10−150,000,000,000. The 

ABC‑conjecture, by contrast, is also considered quite probable, but less so. 

Or take the twin prime conjecture, which says that there are infinitely many pairs of primes 

(p, p + 2). It is not known whether this is true, but it is evidently more likely to be true than the 

stronger prime sextuplet conjecture, which says there are infinitely many sextuples of primes of 

the form (p, p + 4, p + 6, p + 10, p + 12, p + 16) –– the closest possible grouping of six primes. 

Intermediate between those two conjectures are the prime triplet, prime quadruplet and prime 

quintuplet conjectures –– in that order.31

The only way to capture our graded doxastic attitudes about these prime tuples issue within the 

 A prime triplet is a triplet of consecutive primes such that the first and the last are six apart –– that is a 31

triplet of the form (p, p + 2, p + 6) or of the form (p, p + 4, p + 6). Two overlapping triplets make a prime 

quadruplet (p, p + 2, p + 6, p + 8). A prime quintuplet is a quadruplet with another nearby prime attached: 

(p – 4, p, p + 2, p + 6, p + 8) or (p, p + 2, p + 6, p + 8, p + 12), and a sextuplet is two overlapping quintuplets. 

The prime n-tuplet conjecture says there are infinitely many prime n-tuplets. None of these five 

conjectures have been proven or disproven, and no-one knows of a way to prove the stronger ones on the 

basis of the weaker ones –– so they form a strictly increasing progression.
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constraints of the present framework, is to treat them as contingent. What is needed is a way to 

separate the six intuitively distinct answers to this question P, Which prime tuples are there 

infinitely many of, so that we can represent it thus:

P   =   { none of the tuples; only the twins;  only the triples and the twins;

the quadruplets, the triples and the twins;  all but the sextuplets;  all of the tuples }

If we could somehow manage to manoeuvre ourselves into this position, everything would 

work “as normal.” We could distinguish thirty-two different quizpositions AP about P in the 

ordinary way, and attribute agents a probabilistic view on P. It is easy to envisage how this 

approach would extend to other mathematical questions and beliefs. For instance, the Goldbach 

conjecture can be viewed as one answer to the question Which even numbers cannot be written as 

the sum of two primes?

So if only mathematical questions corresponded to non-trivial partitions, then we would be out 

of the woods. Pure mathematical claims would express ordinary quizpositions, and pure  

mathematical beliefs would be ordinary inquisitive beliefs. Thus we would avoid treating them 

as a fundamentally different kind of mental state from contingent beliefs about concrete matters. 

It would do justice to the intuition, which Gaifman emphasises, that mathematical inquiry is an 

ordinary part of the project of finding the truth, distinguished only by its generality (Gaifman 

2004, p. 99).

If only. But the trouble is: where are we to find these non-trivial partitions? Consider again the 

question P, Which prime tuples are there infinitely many of. Assuming mathematical fatalism is true, 

there is just one possible state of affairs here, and that is all we have to work with. So all this 
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speculation about what we could do if we could distinguish five possible state of affairs seems 

idle: the hard fact is that we can’t. The same can be said of the question Which even numbers are 

not the sum of two primes, and the question considered in §5.1, How many real roots does the quintic 

x5 – 5 · x2  + 1 have. 

In the next two sections I will consider two approaches for overcoming this obstacle and 

associating mathematical claims with contingent propositions anyway. In §5.6, I consider the 

radical strategy of denying mathematical fatalism outright. But we will start with a more 

conservative approach, namely the “metalinguistic” strategy proposed by Robert Stalnaker.

5.5  The Metalinguistic Strategy 

What is 73 times 100? Sophie, a bright seven-year old, knows the answer: it is 7300. What about 

41 times 64? She could not tell you, or not without doing some calculation first. But what does 

her ignorance consist of in the latter case? What is it the calculation will reveal to her? Everyone 

can agree that amongst the things Sophie does not at this point know, and which she might 

come to know through performing the calculation, is which base-ten numeral co-refers with the 

expression “41 times 64”.33

But is Sophie, in addition to being uncertain about that metalinguistic fact, also uncertain about 

the numbers themselves? That is to say, is her ignorance about the numerals a surface 

manifestation of an underlying ignorance about the relations that hold between the numbers 
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themselves, an ignorance about which number the multiplication operator relates to the numbers 

41 and 64? Likewise, does Sophie’s knowledge that 73 · 100 equals 7300 amount to anything 

more than knowing that “73 · 100” co-refers with “7300”? That is, does she in addition possess 

some non-trivial piece of knowledge about the numbers these numerals represent?32

Stalnaker (1976, 1984, 1990) argues that the answer to all of those questions is “no”, and that 

belief reports on purely mathematical matters are systematically reinterpreted as beliefs about 

the mathematical symbols used in those reports. Stalnaker 1990 contains something like the 

following argument for the latter claim. It is clearly appropriate to describe Sophie’s state of 

arithmetical knowledge as follows: “She knows that 73 times 100 is 1700, but she does not know 

what 41 times 64 is.” But the following characterisation is inaccurate: “She knows that 111‑base-

eight times 124-base-eight is 1624-base-eight, but she does not know what 51-base-eight times 

100-base-eight is!” 

Insofar as we are concerned with Sophie’s knowledge and ignorance about the numbers 

themselves, the latter descriptions should do fine. After all, 73 and 111-base-eight are both 

 A nominalist may resist the idea that the expression “41 times 64” co-refers with some decimal because 32

they deny that such expressions refer at all. But nominalists typically still admit a sort of faux coreference: 
a syntactically specifiable relation platonists misidentify as coreference, and which holds between “41 
times 64” and a certain unique decimal. I will be sloppy on the distinction between faux coreference and 
coreference, and also about the distinction between faux mathematical truth and truth (where “faux 
mathematical truth” is some syntactically specifiable property like following-from-the-axioms). The 
defining feature of the metalinguistic view as I want to understand it here is this: the cognitive states that 
play the role of mathematical beliefs are beliefs about mathematical expressions, rather than being just 
about the mathematical objects and states of affairs that those expressions purport to refer to.
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equally good names for the same number. But if we are re-interpreting these reports as claims 

about Sophie’s knowledge of the relationship between certain representations, then it is clear 

why the latter report should strike us as inaccurate: for instance, it is simply not true that Sophie 

knows that “111-base-eight times 124-base-eight” corefers with “1624-base-eight”.

There are also more theoretical reasons to think that mathematical ignorance is metalinguistic 

ignorance. One argument stems from the classical account of belief, which entails uncertainty 

about the necessary propositions ⊤ and ⊥ is impossible. So if those propositions are the content 

of pure mathematical claims, the agent cannot be uncertain about the contents themselves. 

Another argument stems from a formalist conception of mathematics, according to which there 

just are no underlying mathematical states of affairs, and (much of) mathematical inquiry just is 

the study of the rule-bound manipulation of certain symbolic systems (e.g. Goodman and Quine 

1947, Curry 1951, Stalnaker 1990, Weir 2015). 

In his early work, Stalnaker fleshes out this view as follows: when φ is a purely mathematical 

sentence, belief attributions of the form ‘α believes/knows that φ’ should systematically be 

reinterpreted as ‘α believes/knows that the sentence φ is true’, (Stalnaker 1976; 1984, Ch. 4-5). ,  33 34

This sort of view is also floated by Braddon-Mitchell and Jackson 2007, Ch.  11, and it is 

developed in Elga and Rayo 2018. Stalnaker (1976, 1984, 1990) claimed that this metalinguistic 

 I am employing single quotation marks as Quine quotes here.33

 Stalnaker 1990 retreats to a far less committal position on the contents of particular belief reports. 34

However, as far as I can see, the points made below are largely independent of how exactly the 

metalinguistic strategy is implemented.
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account of mathematical belief would allow him to distinguish different mathematical views 

while holding on to a coarse-grained, intensional conception of belief content. 

Stalnaker’s contention is based on a simple observation: besides the purely mathematical facts, 

the truth of the proposition that the sentence “73 · 100 equals 7300” is true depends on certain 

semantic facts: in particular, it depends on the details of the decimal number system. Even by 

the light of mathematical fatalism, those semantic facts are contingent. Now the truth of the 

propositions that the sentence “111-base-eight times 124-base-eight equals 1624-base-eight” is true and 

the sentence “41 times 64 equals 2624” is true each depend on quite different semantic facts, and 

thus these are all distinct propositions with different truth-conditions. Thus the intensional view 

of belief content is compatible with an agent believing any one of these metalinguistic 

propositions without believing the other two, even if, given the semantic facts as they actually 

happen to be, the three sentences that these three propositions attribute truth to happen to 

express the same proposition.

This is certainly an interesting and suggestive finding, but as Larry Powers (1976, p. 100), 

Hartry Field (1978, 1986, 2001) and Saul Kripke  were all quick to point out, it does not actually 35

give us a solution to the problem of mathematical ignorance for the classical model of belief. 

The problem is the following. There are certain elementary facts that, by Stalnaker’s own lights, 

are known by basically anyone with a primary school education, and which jointly entail the 

answer to every basic arithmetical question. So since, on the classical view, beliefs are closed 

under entailment, it still follows from this view that anyone who knows those elementary facts 

 Kripke’s point is reported in Stalnaker’s Inquiry: Stalnaker 1984, p. 174, footnote 17 to chapter 4.35
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knows the answer to every basic arithmetical question. For this reason the classical picture still 

completely fails to capture the phenomenon of interest.

There are two ways to see this. The first argument runs as follows (Powers 1976, p. 100). 

Consider English translations of the axioms of Robinson arithmetic (Robinson 1950). These are 

all very elementary arithmetical claims, certainly within the scope of a Grade 2 education, so 

let’s suppose Sophie knows that each one of these statements is true. Given how bright she is, it 

is not too much of a stretch to suppose Sophie also knows the axioms and inference rules of a 

simple system of first-order logic. Sophie knows, for instance, that for any φ and ψ, if the sentence 

‘φ  or ψ’ is true but the sentence φ is not, then the sentence ψ must be true. Now, the truth of the 

axioms, together with the validity of some inference rules, jointly entail the truth of every 

theorem of Robinson arithmetic. 

So, if Sophie’s beliefs really were closed under entailment, she would believe, of any theorem φ  

of Robinson arithmetic, that φ is true. In particular, this includes the solution of every basic 

arithmetical sum. If someone bothers to explain the second-order induction axiom to Sophie, 

she will be number-theoretically omniscient, and know the truth or falsehood of every single 

sentence in the language of arithmetic. So in spite of the metalinguistic twist, the classical view 

still dramatically fails to account for Sophie’s mathematical ignorance.

The other path to this conclusion is even quicker (see Field 2001, p. 34-5, 101-2). Basic semantic 

competence with arithmetical terminology should entail that Sophie knows that “41” refers to 

the number 41, that “times” picks out the multiplication operation, that “64” refers to the 
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number 64, that “equals” refers to the identity relation, and that “2624” refers to the number 

2624. Since the underlying mathematical facts are necessary, those semantic facts alone entail 

that “41 times 64 equals 2624” is a true sentence. So because of deductive closure, it follows that 

Sophie knows that this is a true sentence, which evidently she does not.

Sure, the classical view allows for the possibility of agents who fail to know, of certain basic 

arithmetical truths, that they are truths. Cows for example, or mongooses –– those agents lack 

knowledge of even the basic semantic facts involved. But the classical view does not allow for 

the possibility that English speakers with an elementary grasp of arithmetic, like Sophie, should 

fail to know that “41 times 64 equals 2624” is a true sentence. And it also does not allow for the 

possibility of a mathematician who knows that the axioms of a certain theory T are true, and 

that the inference rules are truth-preserving, but who fails to know of every theorem of T that it 

is true. So even with the metalinguistic move in place, the classical view still does not allow for 

any interesting cases of mathematical ignorance.36

Now note that these problems arise because the classical theory assumes closure under 

entailment. So it is worth investigating how the metalinguistic approach fares in the inquisitive 

 Of course, Stalnaker is aware of these problems. His response has been to point to the possibility of 36

belief fragmentation (Stalnaker 1984, p. 76-7, 1986, p. 120-3, 1999a; see also Elga and Rayo 2018). Given the 

commonalities between the inquisitive account and the fragmentation theory, the suggestion I am about 

to make is perhaps in the spirit to Stalnaker’s broad-brushed remarks. However, as explained in §3.5 

above, I do not view the inquisitive account of belief as a version of the fragmentation strategy. And I 

reject the notion that the ordinary failures of deductive closure should be understood as resulting from 

the fragmentation or compartmentalisation of our doxastic state, because I think that this view fatally 

undermines the essential unifying role that belief attributions play.
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context. A metalinguistic analogue to the question like What is 41 times 64? is easily identified: 

Which decimal numeral is coreferential with “41 times 64”? Or alternatively Which statement of the 

form “41 times 64 equals n” is true? Or take the question considered in §5.4: Which prime tuples are 

there infinitely many of. A metalinguistic analogue is the question Which of the prime tuple 

conjectures are true, where these conjectures are understood as particular statements (in English 

or some formal language).

If we want a more systematic way of doing things, it is not difficult to specify general recipes for 

“lifting” a mathematical question Φ to a metalinguistic analogue. The details do not particularly 

matter for present purposes, but here is one approach:

1. Take any interrogative sentence Φ that expresses a mathematical question.

2. List statements that express distinct complete answers to Φ:   φ1, φ2 , …, φk

3. Let mφi = { w : at w, φi is true and φj is false for all j ≠ i } and let m* = 𝒲\⋃i mφi 

4. The “metalinguistic” content of Φ is the question MΦ, Which of φ1, φ2, … is true: 

MΦ: { mφ1 , mφ2 , … mφk , m*}

Assuming fatalism is true, the semantic content of any complete answer φ to Φ is either { 𝒲 }{ 𝒲 } 

or ⊥{ 𝒲 }  –– this what we saw in §5.1. However, the metalinguistic quizposition associated with φ 

is the quizposition { mφ }MΦ. This is an ordinary, contingent quizposition: agents can be ignorant 

of them, they can reason about them, and they can accord them any level of credence.37

 What about incomplete answers ψ to Φ? Well, these express other quizpositions AψMΦ. It is natural to 37

assume that any answer to MΦ presupposes that the answers φ1, φ2 , …, φk are mutually exclusive and 

exhaustive, so that in general, m* ∉ Aψ, and the agent’s credence in { m* }MΦ is equal to 0. But as long as 

Ø ⊂ Aψ ⊂ MΦ\{m*}, the quizposition AψMΦ  is just a run-of-the-mill, contingent quizposition.
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Meanwhile, the objections to the classical version of the metalinguistic strategy do not go 

through here. Suppose Sophie is an inquisitive agent who believes that whenever some sentence φ 

is true, so is ‘φ or ψ’, and also that  χ  is true . It does not follow from these facts alone that Sophie 

knows that ‘χ or ψ’  is true, even though that conclusion is entailed by her beliefs. In order to 

figure this out, Sophie will first have to reason about the sentences χ and ‘χ or ψ’ and put her 

beliefs together in the right way. Likewise, while Sophie’s semantic beliefs might entail that “41 

times 64 equals 2624” is true, it requires a non-trivial amount of deductive reasoning to see this 

consequence of her beliefs.38

Moreover, as a picture of pure mathematical belief and reasoning in particular, this language- 

and representation-centric picture of mathematical reasoning has a certain natural appeal. As 

Stalnaker puts it: “Mathematical information is most often received in linguistic form, and the 

behaviour that mathematical beliefs dispose us to engage in is primarily behaviour that 

involves linguistic and other representations: calculation, symbolic construction, and proof. It is 

not implausible, I think, to take representations and representational structures to be the subject 

matter of mathematics.” (Stalnaker 1990, p. 237) 

5.6  Rejecting Mathematical Fatalism 

In §5.1, I premised the problem of mathematical ignorance on mathematical fatalism, the view 

that mathematical truths are necessarily true, and mathematical falsehoods are necessarily false. 

 Note, incidentally, that we can also use this strategy to account for failures to recognise complicated 38

logical truths as truths. By contrast, in the classical theory this metalinguistic way of accounting for 
ignorance about logic fails for the same reason as in the mathematical case.
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This doctrine is a firmly established piece of philosophical orthodoxy: it is a highly intuitive 

view that continues to enjoy overwhelming support amongst philosophers. But there are in fact 

various good reasons to think that mathematical fatalism is false, which would open new 

perspectives on the problem of mathematical omniscience. 

Call the negation of mathematical fatalism, the view that certain mathematical facts are 

contingent, mathematical contingentism. As I want to understand it here, this is the view that 

there are possible worlds where the mathematical facts are different. At those worlds, there 

might for instance be more or fewer mathematical objects, or the mathematical relations 

between those objects might be different in some way or other. I am not entertaining the 

suggestion that we enrich the logical space with impossible worlds.

Some arguments in favour of mathematical contingentism come from within mathematics itself. 

Certain mathematical results simply do not sit comfortably with the thesis that the 

mathematical realm is constant across all metaphysically possible worlds. In particular, it has 

been argued that phenomena related to “indefinite extensibility”, such as the Burali-Forti 

paradox and the iterative conception of sets show that no matter how many mathematical 

objects there actually are, there could always be more of them (Parsons 1983, Hellman 1989, 

Hamkins 2012, Studd 2013, Linnebo 2013, 2018; McGee 2006 links related conclusions to the 

Löwenheim-Skolem theorem, Dummett 1963 and Wright and Shapiro 2006 to Gödel’s 

Incompleteness Theorem.)

In addition, various general considerations from metaphysics and ontology favour 

205



mathematical contingentism. For instance, Gideon Rosen (2002) presents an argument that 

mathematical objects exist only contingently, based on the following two premises:

i) Mathematical objects are completely distinct from the concrete physical world (they share 

no common parts or constituents or ingredients with physical objects).

ii) Whenever two objects A and B are completely distinct, it is possible for an intrinsic 

duplicate of A to exist on its own (that is, without an intrinsic duplicate of B that is 

completely distinct from this duplicate of A).

Here (ii) is a general metaphysical principle advocated by, for instance, David Hume and David 

Lewis (Hume 1738, §1.3.6; Lewis 1986, §1.8). A number of other plausible general principles in 

ontology and metaphysical modality also tell against mathematical fatalism: see Field 1993, 

Colyvan 2000, Rosen 2002, Rayo 2013; compare Hale and Wright 1992, 1994. In addition to these  

general arguments, nominalists and fictionalists about mathematics have additional, strong 

reasons to take the non-existence of a mathematical objects to be a contingent matter (e.g. 

Burgess and Rosen 1997, Yablo 2005).

(I think a further consideration in support of contingentism is that we have a good error theory: 

there is a satisfying explanation for why mathematical fatalism would seem true even if it is in 

fact false. In other work, I have argued that statements that make reference to mathematical 

objects are routinely reinterpreted in ways that neutralise those ontological commitments. Now 

as it happens, given this same pragmatic mechanism, mathematical theorems express necessary 

truths even if they are literally false, and even if their literal content is a contingent proposition. 

This would explain why mathematical claims have the appearance of being necessary, even if 
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the propositions they literally express are not in fact necessary; Hoek 2018, §4.7-5, see also 

Yablo 2014, 2017.)

 

Now these considerations in favour of mathematical contingentism offer some hope that the 

problem of mathematical ignorance might simply disappear. For if mathematical facts differ 

from one possible world to the next, then pure mathematical claims will be associated with 

contingent propositions, about which one can be ignorant or doubtful. However, those hopes 

are quickly dashed given the classical view of belief. For we still have closure under entailment 

to contend with. So it is still going to be true, on the classical account, that anyone who believes 

every axiom of a theory must believe every theorem of that theory as well. 

For instance, suppose it turns out that the (finitely many) axioms of von Neumann–Bernays–

Gödel (NBG) are all true, but only contingently so. Then it is still the case that at every world 

where the axioms are true, everything that follows from those axioms is also true. So on the 

classical account, everyone who believes each of the NBG axioms will believe every NBG 

theorem. And likewise, anyone who knows some very basic arithmetical truths knows the 

prime factors of 8,869,332,919. Thus the classical view falls prey to the problem of mathematical 

omniscience independently of whether mathematical fatalism is true or false.

But in the context of the inquisitive view, the contingentist strategy looks much more promising. 

Provided there is enough mathematical contingency, the inquisitive view allows for the 

possibility of an inquisitive agent who believes quizpositions corresponding to all the axioms of 

second-order PA, without believing, for instance, that there are infinitely many primes. After all, 
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none of those axioms say anything about primes, or even use the concept. Thus none of the 

axioms group possible worlds according to the number of primes they contain. So while the 

axioms jointly entail that there are infinitely many primes, it is not part of any of the axioms, or 

even of the conjunction of all the axioms, that there are infinitely many primes.

The proviso that there be enough mathematical contingency is important. Mathematical 

contingentism could be true because only the continuum hypothesis and other undecidable 

statements of ZFC are contingent. If that were the case, it would not get us very far, and leave 

more pedestrian cases of mathematical ignorance, such as ignorance about the twin prime 

conjecture, unaccounted for. Or it might be that the existence of a Platonist realm is the only 

contingency. On this view, there are just two mathematical possibilities: it is possible that all 

mathematical objects exist and stand in the usual mathematical relations, and it is possible that 

there are no mathematical objects at all (Rosen 2002 considers this position). If we want to allow 

for interesting cases of mathematical ignorance, we will need more mathematical possibilities 

than that. However, it strikes me that it is at least prima facie plausible that there are a lot of 

alternative mathematical possibilities if there are any: once mathematical fatalism is given up, 

the floodgates are open so to speak, and it becomes difficult to see what principled limits on 

mathematical contingency might remain.

That is not to say that we need a contingentism so strong that almost all mathematical 

propositions are contingent: maybe the full solution to the problem of mathematical 

omniscience requires a hybrid contingentist-metalinguistic strategy. Perhaps in some cases, 

mathematical ignorance is due to ignorance about the mathematical facts, while in other cases it 
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is just ignorance of semantic facts. It strikes me that some admixture of the metalinguistic 

strategy is intuitively mandated in any event. If you hear someone declare, with wide-eyed 

sincerity, that “One times one equals seven,” the conclusion to draw is surely that the speaker 

does not know what those words mean.

I only provided some very bare-bones, programmatic sketches of how the metalinguistic and 

the contingentist strategies might look in the inquisitive context. Before we have a satisfactory 

basis for an epistemology of mathematics, a great deal more will need to be said, and further 

obstacles will have to be overcome. However, regardless of whether these particular strategies 

ultimately fail or succeed, the point stands that the inquisitive turn has improved their 

prospects substantially. In addition to this, it solves the implicit problem of mathematical 

omniscience. Taken together, I take this to be good reason that the inquisitive account brings us 

an important step closer to the solution of this problem, by giving us a principled way of 

rejecting closure under entailment.

5.7  Informative Identities 

Intuitively, there is a difference between the belief that Superman can fly and the belief that Clark 

Kent can fly: Lois believes only the former. However, assuming the standard treatment of proper 

names as rigid designators (Kripke 1980), there is only one intensional proposition here. This is 

a well-known issue for the intensional view of belief, as well as many other views of belief 

content, including the Russellian view. 
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The move to quizpositions, as they are characterised in §1.3 above, does not immediately help. 

The polar question Can Superman fly partitions logical space into the same two parts as the 

question Can Clark Kent fly does. So while there is an intuitive difference between these two 

questions, our theory does not formally distinguish them. On the face of it, the inquisitive 

theory fails to distinguish the belief Lois has (Superman can fly) from the one she lacks (Clark 

Kent can fly). Similarly, the question How far away is Hesperus is the same partition as the 

question How far away is Phosphorus. But intuitively, an ancient astronomer who did not know 

that Hesperus is identical to Phosphorus may have different answers to these questions.

Relatedly, the reason that Lois’s Superman-beliefs are separate from her Clark Kent-beliefs is 

that she falsely believes that Superman and Clark Kent are different people. But on the most 

straightforward treatment, all the questions that this belief could be taken to answer, like Is 

Superman Clark Kent or Who is Superman,induce the trivial partition { 𝒲 }. So Lois’s belief, on this 

treatment, would seem to correspond to the trivial falsehood ⊥{ 𝒲 }, which is not something one 

can believe. So while quizpositions are more finely individuated than intensional propositions, 

this additional fineness of grain does not immediately help address Frege’s Puzzle. This 

problem about informative identities is clearly reminiscent of the situation with explicit 

mathematical ignorance.

As with the mathematical omniscience problem, I do not take this observation to count 

particularly heavily against the inquisitive theory of belief. After all, nobody has a fully 

satisfactory treatment of Frege’s Puzzle. In particular, there are good reasons to think that a 

move to fine-grained, syntactically structured belief contents cannot solve Frege’s Puzzle –– see 

210



Kripke 1979, Salmon 1983, Saul 1997, 2007, Dorr 2014, Goodman and Lederman 2018. But we 

can do a bit better, and in this section I describe how inquisitive decision theory may contribute 

to a solution to the issue about informative identities.

On the face of it, any true identity statement says of a certain object that it bears the identity 

relation to itself. But that seems like it is a triviality ––  so how can identity statements be 

informative? Frege’s initial approach to this puzzle, in the Begriffsschrift, was metalinguistic 

(Frege 1879, §8). He surmised that in certain contexts, names like “Superman” and “Clark Kent” 

could refer to themselves instead of referring to their usual referent. The substantive fact that is 

expressed by the identity statement “Superman is Clark Kent”, according to Frege, was that 

“Superman” and “Clark Kent” are coreferential names.

 

Although Frege (1892) retracted this view in favour of his theory of sense and reference, the 

metalinguistic approach survived. One modern incarnation of it is the diagonalisation theory 

devised by Robert Stalnaker (1978, 2004). According to this view, a statement φ can in certain 

conversational contexts express a different message from its literal content, which Stalnaker 

calls the diagonal proposition associated with φ. The nomenclature here is connected to 

Stalnaker’s construction of this proposition in terms of two-dimensional modal logic. But there 

is no need to get into the weeds of that here. To a close enough approximation, the diagonal 

proposition associated with a sentence φ is just the intensional proposition that φ is true  

(Stalnaker 1987, p. 82). And the diagonal proposition associated with an identity claim ‘α is β’  is 

the proposition α is coreferential with β, exactly as Frege suggested a century earlier (ibid., p. 91; I 

ignore “Clintonite” cases where the meaning of “is” is in dispute).
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In subsequent papers, Stalnaker (1981, 1987) extended this strategy to belief reports, claiming 

that reports of the form α believes that φ occasionally get reinterpreted as α believes that φ is true. 

Correspondingly, Lois believes that Superman and Clark Kent are different people gets to mean that 

Lois believes that the person called “Superman” is different from the person called “Clark Kent”.   For 39

whatever reason, Stalnaker himself never makes the link, but it is clear that his metalinguistic 

approach to the problem of mathematical omniscience can seen as an instance of this type of 

embedded diagonalisation.

Thus it is perhaps no surprise that diagonalisation faces similar issues. The problem is that Lois 

has semantic information which entails that “Superman” and “Clark Kent” are coreferential. 

Lois knows who the man called “Superman” is. To say that she is acquainted with him would 

be an understatement: she has swayed in his strong arms as they floated through the cityscape 

at dusk, and shared a stolen kiss with him atop a skyscraper. And as all this transpired, Lois was 

constantly acutely aware that this man she was holding was none other than the person called 

“Superman”. So she knows and believes that “Superman” refers to this man. She also knows all 

too well who the man called “Clark Kent” is: he is that pencil-sharpening, pitiful  dork she sees 

slumping around the office every day –– that guy. So clearly she knows and believes that the 

person called “Clark Kent” is that man. The trouble is that these two intensional propositions, 

“Superman” refers to this man and “Clark Kent” refers to that man, taken together, entail that 

“Superman” and “Clark Kent” are coreferential.

 In fact, Stalnaker also allows for further, half-diagonalised interpretations. In particular, sometimes a 39

sentence of the form α believes that β is γ can get interpreted as α believes that γ is the referent of ‘β’, and 

sometimes it can get interpreted as α believes that β is the referent of ‘γ’ (Stalnaker 1987, 127-9).
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Sure, the classical view allows for agents who fail to believe that “Superman” and “Clark Kent” 

are coreferential. For instance, someone who has never even heard the names “Superman” or 

“Clark Kent” fails to believe this. (You and I also do not really believe it, because we think the 

name “Superman” does not refer at all.) But for the reasons I just explained, the classical 

account fails exactly in the interesting case: it cannot account for Lois’s ignorance, because her 

beliefs entail that “Superman” and “Clark Kent” are coreferential. Once again, this is strongly 

reminiscent of the mathematical case: the classical account allows agents that are unsure 

whether Fermat’s last theorem is true –– just no-one who knows basic arithmetic.

However, the example of Lois also brings out something more: the classical assumptions of 

closure under conjunction and entailment, when implemented possible-worlds style, imply 

idealisations that go beyond the attribution of an unrealistic level of computational power to 

agents. Presumably, a “computationally ideal” agent, whose mind is a perfect, instant Turing 

machine, could still be subject to identity confusions. So the rationality assumptions of the 

classical picture go beyond idealising agents’ deductive abilities, introducing further distortions 

as well (§2.9 above made a similar point).

Once again, the inquisitive picture seems to avoid this trap. On the inquisitive view, the natural 

way to model Lois’ background semantic beliefs is as follows: 40

S: To whom does “Superman” refer?, A: “Superman” refers to Kal-El

K: To whom does “Clark Kent” refer?, B: “Clark Kent” refers to Kal-El

 Here I am following a convention to use Superman’s Kryptonian name “Kal‑El” as a more neutral 40

alternative to “Clark Kent” and “Superman” –– see for instance Pitt 2001.
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Lois believes both AS and BK. In addition, she also believes CR:

R: Do “Superman” and “Clark Kent” refer to the same person or not?, C: They do not.

While AS, BK and CR are inconsistent, they are not incoherent, which is to say that they all fit 

together in an inquisitive belief state.

It is essential to this proposal that Lois does not believe the conjunction ABSK of her semantic 

beliefs AS and BK. While the question R is part of neither S nor K, it is part of the question SK, so 

that ¬CR is part of ABSK. That means ABSK and CR are incoherent, and cannot coexist in a single 

inquisitive belief state. The step from believing AS and BK to believing their conjunction ABSK is 

one that Lois cannot make by deduction alone. 

Some may regard this consequence of the view as unpalatable, but I take it to be independently 

motivated. Answering the questions S and K just requires Lois to keep track of the intrinsic 

semantic properties of the individual names, but answering the question SK in addition requires 

her to keep track of the semantic relations between “Superman” and “Clark”, in particular the 

question of coreference. Thus the latter is a strictly more demanding task, which in this case 

requires Lois to sort out her identity confusions. 

Kit Fine (2007) gave intriguing arguments to the effect that certain semantic facts about proper 

names are irreducibly relational. He analogised the situation to Russell’s “antinomy of the 

variable” (Fine 2007, Ch. 1; Russell 1903, §3). Knowing the meaning of a variable in a first order 

language, “x” say, requires little more than knowing the domain over which “x” is allowed to 

range. But knowing the joint meaning of two variables “x” and “y” requires more than this: we 
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need to know whether the variables are allowed to vary independently (as in standard predicate 

logic), or whether they are anti-correlated (as beginning students of predicate logic often 

assume). The inquisitive metalinguistic account of identity confusion just presented gives us a 

way to incorporate Fine’s insight: it naturally renders knowing the reference of two names 

separately less demanding than knowing the reference of both names together. This gives us a 

clear way of understanding exactly how this issue about variables is supposed to be related to 

Frege’s Puzzle (this is something that never became entirely clear from Fine’s own exposition; 

see Pickel and Rabern 2017).
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