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Loose Talk
The use of precise measurements where only an 
approximate quantity is intended: 

• “Camilla arrived at 6 o’clock” 

• “Rob is six foot one” 

• “The library lent out a million books this year” 

• “The molar mass of water is 18.015 grams.”
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Round numbers make for 
looser talk (Krifka)

• The amount of ‘give’ varies with the measurement expression 

• “The earth is five billion years old” has a reading the earth 
is between 4.5 and 5.5 billion years old. 

• “The earth is four point five billion years old” has no 
reading the earth is between 4 and 5 billion years old. 

• “This parrot is 22 inches tall” has a reading this parrot is 
between 21.5 and 22.5 inches tall 

• “This parrot is 55.88 cm tall” has no reading this parrot is 
between 54.61 and 57.15 cm tall
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The Negation Problem 
(Carter)

The negations of weakened loose talk statements 
undergo strengthening. 

• “Camilla didn’t arrive at 6 o’clock” 

• “Rob isn’t six foot one” 

• “There weren’t two dozen people at the party” 

• “The molar mass of water isn’t 18.015 grams.”
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Other embeddings

• “Everyone who arrived at six o’clock got a free 
lunch.” 

• “At most three people in this room are six foot 
one.” 

• “If Riga is 800 miles from Vienna, the trip will take 
as long as going from New York to Chicago.”
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Strict Comparatives

• There are more than two hundred people at the 
party. 

• A: There are two hundred people at the party.  
B1: Actually, there are more than two hundred.  
#B2: Actually, there are at least two hundred and 
two.
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Scales (Krifka)
• We always choose the measurement expressions we use 

from a particular scale. Scales are examples of expression 
choice spaces. 

• In English speaking countries, personal height tends to be 
specified using the feet-and-inches scale: 

• {…, “5 foot 10”, “5 foot 11”, “6 feet”, “6 foot 1”, …} 

• {…, “80 cm”, “90 cm”, “1m”, “1.1m”, “1.2m”, …} 

• {…, “five to ten”, “ten o’clock”, “five past ten”, “ten past 
ten” …}
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Coarse and fine scales

• {… 400 miles, 500 miles, 600 miles, 700 miles …} 

• {… 450 miles, 500 miles, 550 miles, 600 miles, …} 

• {… 490 miles, 500 miles, 510 miles, 520 miles, …} 

• {… 499 miles, 500 miles, 501 miles, 502 miles, …} 

• {… 499.99 miles, 500.00 miles, 500.01 miles, …}
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Scales are connected to 
questions (QUDs)

• Loose talk arises in large part because we only 
care about quantities to a certain level of 
precision. (No-one wants to know how many 
millimetres Amsterdam is from Vienna) 

• One can represent the level of precision we care 
about using the QUD, with coarser QUDs 
representing more relaxed attitudes. 

• Coarser scales address coarser questions
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Scales carry 
presuppositions

{…,“5 foot 10”, “5 foot 11”, “6 feet”, “6 foot 1”, …} 

• There are many intermediate heights not 
represented on this scale, so in using this scale, 
one ignores those possibilities. 

• Restricting oneself to the expressions on this list, 
one is effectively presupposing people are some 
exact number of inches tall. 

• Coarser scales carry stronger presuppositions
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“This is the peg at 
Caroline’s height."
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…

‘Rob is six foot one’

‘Rob is six foot one to the nearest inch’
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Logical Space (Ω)
Ω is the set of all possible worlds
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Logical Space (Ω)
Ω is the set of all possible worlds
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6’1 6’3”5’11”5’9” …

Logical Space (Ω)
Ω is the set of all possible worlds
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‘Rob is six foot one’

6’1” 6’3”5’11”5’9” …

Def.: A proposition is (represented by) a set of possible worlds. A 
proposition is true at all and only those worlds that are its members, 

and false everywhere else.
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‘Rob is six foot one to the 
nearest inch’

6’1” 6’3”5’11”5’9” …
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6’1” 6’3”5’11”5’9” …

6’1” 6’3”5’11”5’9” …

...

...
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‘How tall is Rob to the 
nearest inch?’

Def.: A question or subject matter is a partition of Ω. That is, it is a set 
of non-empty, disjoint sets of possible worlds, whose union is Ω.

6’1” 6’3”5’11”5’9” …
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6’1” 6’3”5’11”5’9”

…

6’1” 6’3”5’10”5’8” …

...

...

Relevance 
Def.: A proposition p is (wholly) about a subject matter S if and only if 

p = ∪X for some set of cells X ⊆ S.
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6’1” 6’3”5’11”5’9”

…

6’1” 6’3”5’11”5’9” …

...

...

Scale presupposition

30

6’1” 6’3”5’11”5’9”

…

6’1” 6’3”5’11”5’9” …

...

...

Scale presupposition
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A partial proposition
A partial proposition is (represented by) an ordered pair 〈t, f 〉 where t 

and f are disjoint sets of worlds. 〈t, f 〉 is true at w iff w ∈ t, and false at w 
iff w ∈ f. The truth value of 〈t, f 〉 is undefined outside t ∪ f.

The pair 〈a, ¬a〉 represents a full proposition, viz. the same full 
proposition as the set a.
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‘Rob is six foot one’ ⨡ ‘Rob is 
an exact number of inches tall’

Def. the restriction of p to q, written p ⨡q, is  
the partial proposition 〈p ∩ q, ¬p ∩ q 〉 (here ¬p = Ω\p)
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‘Rob is six foot one’ ⨡ ‘Rob is 
an exact number of inches tall’

6’ 6’2”5’11”5’9” …

Def. The partial proposition 〈t, f 〉 is (wholly) about the question S if 
and only if 〈t, f 〉 = r ⨡b for some full proposition r about S.
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‘Rob is six foot one to the 
nearest inch’

6’1” 6’3”5’11”5’9” …
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Completion
Def. Suppose 〈t, f 〉  is a partial proposition about S. Then the completion of 〈t, f 〉 

by S, written S(〈t, f 〉), is the following (partial) proposition: 

S(〈t, f 〉) =df 〈{w : w ~S v for some v ∈ t }, {w : w ~S v for some v ∈ f }〉
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6’1” 6’3”5’11”5’9” …

6’1” 6’3”5’11”5’9” …

...

...
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We start with the semantically 
expressed proposition p

6’1” 6’3”5’11”5’9” …

S(p ⨡q)
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I. Restrict p to a suitable 
contextual presupposition q

6’1” 6’3”5’11”5’9” …

q

S(p ⨡q)
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I. Restrict p to a suitable 
contextual presupposition q

6’1” 6’3”5’11”5’9” …

q

S(p ⨡q)
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6’1” 6’3”5’11”5’9” …

S(p ⨡q)

II. Complete the resulting 
proposition by S
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6’1” 6’3”5’11”5’9” …

S(p ⨡q)

II. Complete the resulting 
proposition by S
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p

S(p ⨡q)

qS
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r = S(p ⨡q)
p: Rob is six feet tall (literal content) 
q: Rob is an exact number of inches tall (supposition) 
S: Rob’s height to the nearest inch (QUD) 
r: Rob is six feet tall to the nearest inch (literal content) 

Conversational Exculpature: Suppose in a conversation 
with the question S as its QUD, the speaker makes an 
assertion with p as its literal content, while contextually 
presupposing q. Whenever the proposition S(p⨡q) is well-
defined, it is available as a non-literal reading of the 
speaker’s claim. 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Negation:  
‘Rob isn’t six foot one’

6’1” 6’3”5’11”5’9” …
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‘Rob isn’t six foot one’ ⨡ ‘Rob is 
an exact number of inches tall’

6’1” 6’3”5’11”5’9” …
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‘It is not the case that Rob is 
six foot one to the nearest inch’

6’1” 6’3”5’11”5’9” …
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S(¬p ⨡q) = ¬S(p ⨡q)
Transparency to Boolean operators: 

Let ‘↺’ abbreviate the operator p ↦ S(p ⨡q).  Then for any 
propositions p and pi such that ↺p and ↺pi  are well-defined: 

1. ¬ ↺p    =   ↺ ¬p 

2. ⋀i ∈ I ↺pi   =   ↺ ⋀i ∈ I pi  

3.  ⋁i ∈ I ↺pi   =   ↺ ⋁i ∈ I pi 
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Strict comparatives 
‘Rob is over six foot one’

6’1” 6’3”5’11”5’9” …
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‘Rob is over six foot one’ ⨡ ‘Rob 
is an exact number of inches tall’

6’1” 6’3”5’11”5’9” …
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‘Rob is closer to six foot two 
than to six foot one.’

6’1” 6’3”5’11”5’9” …
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Rounder numbers, 
 looser talk

• Coarse scales are made up out of round numbers 

• As noted before, coarser scales carry stronger 
contextual presuppositions and are used for more 
coarse grained questions 

• The account predicts the effect of exculpating strong 
suppositions with coarse questions is greater than the 
effect of exculpating weak ones with fine questions 

• This explains why round numbers make for greater 
weakening/strengthening
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Scale Ambiguity

• {… 400 miles, 500 miles, 600 miles, 700 miles …} 

• {… 450 miles, 500 miles, 550 miles, 600 miles, …} 

• {… 490 miles, 500 miles, 510 miles, 520 miles, …} 

• {… 499 miles, 500 miles, 501 miles, 502 miles, …} 

• {… 499.99 miles, 500.00 miles, 500.01 miles, …}
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Scale Ambiguity
• Because round numbers occur on fine as well as on 

coarse scales, the use of a round number doesn't 
unambiguously indicate the use of a coarse scale 

• Words like “exactly” mark the use of a fine scale, while  
“roughly” indicates a coarse scale. This correctly predicts 
a strong [weak] reading for “There are exactly [roughly] 
twenty thousand people at the rally.” 

• This also explains why “There were roughly 23.672 people 
in the stadium” is infelicitous: “roughly” indicates a coarse 
scale, but the expression “23.672” occurs only on a 
maximally fine scale.
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Conclusions
• The present account of loose talk provides the correct 

prediction about downward entailing environments 

• It accounts for why round numbers make for looser 
talk 

• It explains the role of slack regulators as scale 
disambiguators 

• It achieves this by appeal an independently 
motivated pragmatic mechanism of exculpature
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Exculpature and Metaphor

‘Crotone lies in the arch of the  
Italian Boot’
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Crotone
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Exculpature and Metaphor

‘Crotone lies in the arch of the  
Italian Boot’

‘Crotone is in Southern Calabria’
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s1 s2 s4 s5 s6s3

s1 s2 s3 s4 s5 s6

60



s1 s2 s4 s5 s6s3

q

p ⨡q

I. Restrict p to a suitable 
contextual presupposition q
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I. Restrict p to a suitable 
contextual presupposition q

q

p ⨡q

s1 s2 s4 s5 s6s3
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II. Complete the resulting 
proposition by S

s1 s2 s4 s5 s6s3s1 s2 s4 s5 s6s3

p ⨡qS(      )
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p

S(p ⨡q)

q

s1 s2 s4 s5 s6s3

S
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Let p, r and q be full propositions, and let S be a subject 
matter. Then we have r = S(p ⨡q) if and only if the following 
three conditions obtain: 

• Aboutness: r is about S 
• Equivalence: p ⨡q = r ⨡q  
• Independence: q has no bearing on S 

In case only this final condition fails, we have S(p  ⨡q) = r ⨡s, 
where s is the strongest proposition about S entailed by q.

A Useful Result
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